Abstract:
A liquid dispensing valve (12) including a liquid inlet (90) for receiving the liquid and a liquid outlet (92) for discharging the liquid. A valve member (44) is mounted for movement relative to the liquid outlet (92) between open and closed positions. A liquid passage (96) communicates between the liquid inlet (90) and the liquid outlet (92). An air inlet (1 14) is provided for receiving air from a source of pressurized air. An air passageway (120 and/or 128) is coupled with the air inlet (114). A pneumatic actuator (40, 110, 112) communicates with the air passageway (120 and/or 128) for moving the valve member (44) at least to the open position. An electrically operated air supply device (70) interacts with the air passageway (120 and/or 128) so as to control the flow of pressurized air to the pneumatic actuator (40, 110, 112).
Abstract:
An apparatus (10) for dispensing a filament of liquid includes a nozzle (12) having a liquid discharge passage (46) and a plurality of air discharge passages (70, 72, 74, 76). The liquid discharge passage (46) extends centrally through a frustoconical protrusion (89) which is located in a recess (88). The air discharge passages (70, 72, 74, 76) are arranged in a pattern around the liquid discharge passage (46) at the base of the protrusion (89) within the recess (88). The air discharge passages (70, 72, 74, 76) have axes (70a, 72a, 74a, 76a) which are inclined such that jets of air from the air discharge passages (70, 72, 74, 76) are tangential to the filament (13) dispensed from the liquid discharge passage (46). The jets of air cause the filament (13) to move in a swirl pattern as it is deposited on a substrate (18).
Abstract:
A contact nozzle (2) for coating an elastic strand (12) with an adhesive (14). Air (1 8) is discharged at the adhesive (14) in contact with the strand (12), causing the adhesive (14) to spread around the periphery of the strand (12). The air (18) assists with release of the adhesive (14) from the nozzle (2) and also cleans the nozzle (2) to discourage adhesive build-up on the nozzle (2).
Abstract:
A liquid dispensing module (10) and nozzle or die tip (28) for discharging at least one liquid filament (74). The nozzle (28) includes a strand guide or notch (42) for guiding a substrate past the nozzle (28) and a frustoconical protrusion (56) disposed on a surface of the nozzle adjacent the notch (42). A liquid discharge passage (48) extends along an axis (48a) through the frustoconical protrusion (56) and forms an acute angle with a machine direction corresponding to movement of the strand (44) past the nozzle (28). Four air discharge passages (60, 62, 64, 66) are positioned at the base of the frustoconical protrusion (56). Each of the air discharge passages (60, 62, 64, 66) is angled in a compound manner generally toward the liquid discharge passage (48) and offset from the axis (48a) of the liquid discharge passage (48) to create the controlled pattern of liquid material (74) on the strand (44).
Abstract:
A liquid dispensing valve (12) including a liquid inlet (90) for receiving the liquid and a liquid outlet (92) for discharging the liquid. A valve member (44) is mounted for movement relative to the liquid outlet (92) between open and closed positions. A liquid passage (96) communicates between the liquid inlet (90) and the liquid outlet (92). An air inlet (1 14) is provided for receiving air from a source of pressurized air. An air passageway (120 and/or 128) is coupled with the air inlet (114). A pneumatic actuator (40, 110, 112) communicates with the air passageway (120 and/or 128) for moving the valve member (44) at least to the open position. An electrically operated air supply device (70) interacts with the air passageway (120 and/or 128) so as to control the flow of pressurized air to the pneumatic actuator (40, 110, 112).
Abstract:
A protective member (14) and a nozzle assembly (11) incorporating the protective member (14) are provided. The protective member (14) is for use with a nozzle (12) having a strand guide passageway (18) for receiving a strand (16) of material. Protective member (14) comprises a body (60) configured to be received in the strand guide passageway (18) of the nozzle (12). The body (60) of the protective member (14) has a passageway (63) for the strand (16) and is disposed between the strand guide passageway (18) and the moving strand (16). The body (60) of the protective member (14) is composed, at least in part, of a material having a wear resistance sufficient to resist wear caused by the strand (16) being guided thereby. Alternatively, a portion of the body (60) may be coated with a material having a wear resistance sufficient to resist wear caused by the strand (16).
Abstract:
A dispenser (10, 10a) for dispensing liquid material while attenuating the liquid material or controlling the pattern of the liquid material with process air has a plurality of process air passages (48) for providing process air to one or more liquid dispensing modules (12) or nozzles (18). The flow rate of process air provided to one or more of the modules (12) or nozzles (18) may be separately controlled to be different f rom the f low rate provided to other modules (12) or nozzles (18) on the dispenser (10, 10a) . Accordingly, the flow rate provided to each module (12) or nozzle (18) can be optimized to accommodate a particular dispensing nozzle or die.
Abstract:
An apparatus (10) for dispensing a filament of liquid includes a nozzle (12) having a liquid discharge passage (46) and a plurality of air discharge passages (70, 72, 74, 76). The liquid discharge passage (46) extends centrally through a frustoconical protrusion (89) which is located in a recess (88). The air discharge passages (70, 72, 74, 76) are arranged in a pattern around the liquid discharge passage (46) at the base of the protrusion (89) within the recess (88). The air discharge passages (70, 72, 74, 76) have axes (70a, 72a, 74a, 76a) which are inclined such that jets of air from the air discharge passages (70, 72, 74, 76) are tangential to the filament (13) dispensed from the liquid discharge passage (46). The jets of air cause the filament (13) to move in a swirl pattern as it is deposited on a substrate (18).