Abstract:
In a seal gasket-integrated MEA (45) in which a frame (450) having a sealing part (459) is integrally formed around a membrane-electrode assembly (MEA section 451), a high-rigidity member (458) having higher rigidity than the frame (450) is provide around a frame (450) having relatively low rigidity.
Abstract:
A hydrogen permeable membrane (10) for selectively allowing hydrogen to permeate therethrough includes a metal base layer (12) containing vanadium (V), a metal coating layer (16) containing palladium (Pd), and an intermediate layer (14) that is formed between the metal base layer (12) and the metal coating layer (16) and made of a metal having a higher melting point than the metal base layer (12) and the metal coating layer (16) and possessing hydrogen permeability.
Abstract:
Ribs (41a, 43a) are formed on a cathode plate (41) and an anode plate (43) of a fuel cell (10). The ribs (41a, 43a) protrude toward a contact surface of porous members (26, 27), and provided along an outer periphery of the porous members (26, 27) to surround the outer periphery of the porous members (26, 27). The rib (41a) of the cathode plate (41) and the rib (43a) of the anode plate (43) are arranged to face each other when separator (40) and the porous members (26, 27) are stacked on both sides of a power generating portion (20). The power generating portion (20), the porous members (26, 27), and the separator (40) are stacked such that a seal gasket (30) on the power generating portion (20) is partially sandwiched between the ribs (41a, 43a).The perimeter of the porous members ( 26, 27 ) is sealed by an embedded member ( 28, 29) made of, for example, wax materials.
Abstract:
A separator of a fuel cell track, which has flat surfaces that face MEAs, includes a cathode-side plate, an anode-side plate and an intermediate plate. The intermediate plate has a plurality of oxidant gas supply channel openings that communicate with an oxidant gas supply manifold and oxidant gas supply holes of the cathode-side plate, and a plurality of oxidant gas exhaust channel openings that communicate with an oxidant gas exhaust manifold and oxidant gas exhaust holes of the anode-side plate. The width and spacing of the oxidant gas exhaust channel openings are set to be larger than those of the oxidant gas supply channel openings.
Abstract:
A fuel cell of the invention has a hydrogen permeable metal layer, which is formed on a plane of an electrolyte layer that has proton conductivity and includes a hydrogen permeable metal. The fuel cell includes a higher temperature zone and a lower temperature zone that has a lower temperature than the higher temperature zone. The hydrogen permeable metal layer includes a lower temperature area A corresponding to the lower temperature zone and a higher temperature area B corresponding to the higher temperature zone. The lower temperature area A and the higher temperature area B have different settings of composition and/or layout of components. This arrangement effectively prevents potential deterioration of cell performance due to an uneven distribution of internal temperature of the fuel cell including the hydrogen permeable metal layer.
Abstract:
A fuel cell having a plurality of cell modules stacked on top of each other has a spring module and a connector. The spring module includes a first flat plate disposed parallel to the cell modules, a second flat plate opposed to the first flat plate, and a spring having a first end in contact with the first flat plate and a second end in contact with the second flat plate. The connector connects the first flat plate and the second flat plate and allows the first flat plate and the second flat plate to move relative to each other.
Abstract:
A separator of a fuel cell track, which has flat surfaces that face MEAs, includes a cathode-side plate, an anode-side plate and an intermediate plate. The intermediate plate has a plurality of oxidant gas supply channel openings that communicate with an oxidant gas supply manifold and oxidant gas supply holes of the cathode-side plate, and a plurality of oxidant gas exhaust channel openings that communicate with an oxidant gas exhaust manifold and oxidant gas exhaust holes of the anode-side plate. The width and spacing of the oxidant gas exhaust channel openings are set to be larger than those of the oxidant gas supply channel openings.
Abstract:
The manufacturing method of the invention is applied to manufacture a unit fuel cell 20, which has a hydrogen-permeable metal layer 22 of a hydrogen-permeable metal and an electrolyte layer 21 that is located on the hydrogen-permeable metal layer 22 and has proton conductivity. The method first forms the electrolyte layer 21 on the hydrogen-permeable metal layer 22, and subsequently forms an electrically conductive cathode 24 on the electrolyte layer 21 to block off an electrical connection between the cathode 24 and the hydrogen-permeable metal layer 22. The method releases Pd toward the electrolyte layer 21 in a direction substantially perpendicular to the electrolyte layer 21 to form a Pd layer as the cathode 24 that is thinner than the electrolyte layer 21. This arrangement of the invention effective prevents a potential short circuit, for example, between the cathode and the hydrogen-permeable metal layer, in the fuel cell, due to pores present in the electrolyte layer.
Abstract:
The manufacturing method of the invention is applied to manufacture a unit fuel cell 20, which has a hydrogen-permeable metal layer 22 of a hydrogen-permeable metal and an electrolyte layer 21 that is located on the hydrogen-permeable metal layer 22 and has proton conductivity. The method first forms the electrolyte layer 21 on the hydrogen-permeable metal layer 22, and subsequently forms an electrically conductive cathode 24 on the electrolyte layer 21 to block off an electrical connection between the cathode 24 and the hydrogen-permeable metal layer 22. The method releases Pd toward the electrolyte layer 21 in a direction substantially perpendicular to the electrolyte layer 21 to form a Pd layer as the cathode 24 that is thinner than the electrolyte layer 21. This arrangement of the invention effective prevents a potential short circuit, for example, between the cathode and the hydrogen-permeable metal layer, in the fuel cell, due to pores present in the electrolyte layer.
Abstract:
A fuel cell having a plurality of cell modules stacked on top of each other has a spring module and a connector. The spring module includes a first flat plate disposed parallel to the cell modules, a second flat plate opposed to the first flat plate, and a spring having a first end in contact with the first flat plate and a second end in contact with the second flat plate. The connector connects the first flat plate and the second flat plate and allows the first flat plate and the second flat plate to move relative to each other.