Abstract:
An image guided treatment is performed to treat a target. To perform the image guided treatment, measurement data indicative of target motion is acquired. A timing of one or more x-ray images is determined based on the measurement data. Treatment may be performed on the target using the position of the target.
Abstract:
The present invention provides a radiosurgery and/or radiotherapy x-ray system including a collision avoidance subsystem for detecting and avoiding obstacles during treatment. The system includes an x-ray source having an emission head at a distal end of an articulated arm assembly extending from a base unit, with the head being adapted for selectively emitting an x-ray beam along a beam axis, and including an associated controller for selectively orienting the head whereby the beam extends along a succession of treatment axes. The system further includes a collision avoidance subsystem including means for preventing the head and arm assembly from effecting a collision with an object in one or more pre-computed exclusion zones.
Abstract:
An apparatus includes a portion that moves along a guided path and a displacement gauge that outputs readings based on the portion's position on the guided path. The apparatus additionally includes an intermediate limit switch that is activated in response to the portion being moved to an intermediate position on the guided path. The apparatus also includes a processing device configured to calibrate the apparatus based on a first reading corresponding to a first position on the guided path and a second reading corresponding to a second position on the guided path. The processing device verifies the calibration based on a third reading corresponding to the intermediate position.
Abstract:
A robotic treatment delivery system including a linear accelerator (LINAC), and a robotic manipulator coupled to the LINAC. The robotic manipulator is configured to move the LINAC along seven or more degrees of freedom, at least one of the seven degrees of freedom being a redundant degree of freedom.
Abstract:
A robotic treatment delivery system including a linear accelerator (LINAC), and a robotic arm coupled to the LINAC. The robotic arm is configured to move the LINAC along at least four rotational degrees of freedom and one substantially linear degree of freedom.
Abstract:
A method and apparatus to automatically control the timing of an image acquisition by an imaging system in developing a correlation model of movement of a target within a patient.
Abstract:
An apparatus includes a portion that moves along a guided path and a displacement gauge that outputs readings based on the portion's position on the guided path. The apparatus additionally includes an intermediate limit switch that is activated in response to the portion being moved to an intermediate position on the guided path. The apparatus also includes a processing device configured to calibrate the apparatus based on a first reading corresponding to a first position on the guided path and a second reading corresponding to a second position on the guided path. The processing device verifies the calibration based on a third reading corresponding to the intermediate position. The apparatus may be a variable aperture collimator.
Abstract:
An apparatus and method for determining optimized path traversal in a radiation delivery system is described. In one embodiment, determining an optimized path traversal in a radiation delivery system involves providing a plurality of spatial nodes used in a treatment plan, where each of the plurality of spatial nodes represents a position of a radiation source made available to the treatment plan for delivering radiation to a target, identifying a number of unused spatial nodes, from among the plurality of spatial nodes, at which radiation is not delivered according to the treatment plan, and skipping travel to one or more of the unused nodes by the radiation source when administering the treatment plan. Other embodiments are also described.