Abstract:
The present invention relates to unique isoforms of eukaryotic initiation Factor 5A ("eIF-5A"): senescence-induced eIF-5A; wounding/pathogen induced eIF-5A; stress eIF-5A and growth eIF-5A, as well as polynucleotides that encode these three factors. The present invention also relates to methods involving modulating the expression of these factors. The present invention also relates to deoxyhypusine synthase ("DHS"), polynucleotides that encode DHS, and methods involving modulating the expression of DHS.
Abstract:
Methods of increasing seed yield in plants using vectors incorporating either an antisense polynucleotide of DHS or a sense polynucleotide of eIF-SA
Abstract:
The present invention relates to unique isoforms of eukaryotic initiation Factor 5A ("eIF-5A"): senescence-induced eIF-5A; wounding/pathogen induced eIF-5A; stress eIF-5A and growth eIF-5A, as well as polynucleotides that encode these three factors. The present invention also relates to methods involving modulating the expression of these factors. The present invention also relates to deoxyhypusine synthase ("DHS"), polynucleotides that encode DHS, and methods involving modulating the expression of DHS.
Abstract:
The present invention relates to apoptosis specific eucaryotic initiation factor 5A (eIF-5A), referred to as apoptosis-specific eIF-5A or eIF5-A1, nucleic acids and polypeptides and methods for inhibiting or suppressing apoptosis in cells using antisense nucleotides or siRNAs to inhibit expression of apoptosis-specific eIF-5A. The invention also relates to suppressing or inhibiting expression of pro-inflammatory cytokines or inhibiting activation of NFkB by inhibiting expression of apoptosis-specific eIF-5A.
Abstract:
The present invention relates to unique isoforms of eukaryotic initiation Factor 5A ("eIF-5A"): senescence-induced eIF-5A; wounding-induced eIF-5A; and growth eIF-5A, as well as polynucleotides that encode these three factors. The present invention also relates to methods involving modulating the expression of these factors. The present invention also relates to deoxyhypusine synthase ("DHS"), polynucleotides that encode DHS, and methods involving modulating the expression of DHS.
Abstract:
Regulation of expression of programmed cell death, including senescence, in plants is achieved by integration of a gene or gene fragment encoding senescence-induced eIF-5A or both into the plant genome in antisense orientation. Plant genes encoding senescence-induced deoxyhpusine synthase and senescence-induced elF-5A are identified and the nucleotide sequences of each, aon and in combination are used to modify senescence in transgenic plants
Abstract:
The present invention provides transgenic algal cells that produce an increased amount of oil, methods of making transgenic algal cells, and methods of obtaining biofuel from the transgenic algal cells.
Abstract:
The present invention relates to the combinatorial use of an siRNA targeted against an endogenous gene to knock out or knock down expression of the endogenous gene in a host and a delivery of a polynucleotide encoding the gene in a delivery vehicle/expression vector to the host to provide expression in the host of the protein encoded by the polynucleotide.
Abstract:
The present invention relates to methods for improving the viability and recovery of islets that are separated from a donor organ for subsequent transplantation and more particularly relates to the use of eIF5A siRNAs to enhance the viability of islets.
Abstract:
The present invention relates to methods for improving the viability and recovery of islets that are separated from a donor organ for subsequent transplantation and more particularly relates to the use of eIF5A siRNAs to enhance the viability of islets.