Abstract:
A method of chemical mechanical polishing a substrate includes polishing a metal layer on the substrate at a polishing station, monitoring thickness of the metal layer during polishing at the polishing station with an eddy current monitoring system, and controlling pressures applied by a carrier head to the substrate during polishing of the metal layer at the polishing station based on thickness measurements of the metal layer from the eddy current monitoring system to reduce differences between an expected thickness profile of the metal layer and a target profile, wherein the metal layer has a resistivity greater than 700 ohm Angstroms.
Abstract:
A method of chemical mechanical polishing a substrate includes polishing a metal layer on the substrate at a polishing station, monitoring thickness of the metal layer during polishing at the polishing station with an eddy current monitoring system, and halting polishing when the eddy current monitoring system indicates that residue of the metal layer is removed from an underlying layer and a top surface of the underlying layer is exposed.
Abstract:
A method of chemical mechanical polishing a substrate includes polishing a metal layer on the substrate at a polishing station, monitoring thickness of the metal layer during polishing at the polishing station with an eddy current monitoring system, and controlling pressures applied by a carrier head to the substrate during polishing of the metal layer at the polishing station based on thickness measurements of the metal layer from the eddy current monitoring system to reduce differences between an expected thickness profile of the metal layer and a target profile, wherein the metal layer has a resistivity greater than 700 ohm Angstroms.
Abstract:
A method of chemical mechanical polishing a substrate includes polishing a metal layer on the substrate at a polishing station, monitoring thickness of the metal layer during polishing at the polishing station with an eddy current monitoring system, and halting polishing when the eddy current monitoring system indicates that residue of the metal layer is removed from an underlying layer and a top surface of the underlying layer is exposed.
Abstract:
A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first prepolish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
Abstract:
Methods for chemical mechanical polishing (CMP) of semiconductor substrates, and more particularly to temperature control during such chemical mechanical polishing are provided. In one aspect, the method comprises polishing the substrate with a polishing surface during a polishing process to remove a portion of the conductive material, repeatedly monitoring a temperature of the polishing surface during the polishing process, and exposing the polishing surface to a rate quench process in response to the monitored temperature so as to achieve a target value for the monitored temperature during the polishing process.
Abstract:
A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first prepolish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
Abstract:
A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first prepolish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.