Abstract:
Methods and apparatus provide for: a base on which a substrate may be releasably coupled; a moving belt located with respect to the base such that a contact surface thereof is operable to remove material from a top surface of the substrate; and a plurality of actuators, at least two of which are independently controllable, located with respect to the base and the moving belt such that a corresponding plurality of pressure zones are defined to provide pressure between the moving belt and the top surface of the substrate.
Abstract:
A bonding plate mechanism for use in anodic bonding of first and second material sheets together, the apparatus comprising: a base including first and second spaced apart surfaces; a thermal insulator supported by the second surface of the base and operable to impede heat transfer to the base; a heating disk directly or indirectly coupled to the insulator and operable to produce heat in response to electrical power; and a thermal spreader directly or indirectly coupled to the heating disk and operable to at least channel heat from the heating disk, and impart voltage, to the first material sheet, wherein the heat and voltage imparted to the first material sheet are in accordance with respective heating and voltage profiles to assist in the anodic bonding of the first and second material sheets, and a thermal inertia of the bonding plate mechanism is relatively low such that heating of the first material sheet to a temperature of about 600 ?C or greater is achieved in less than about one-half hour.
Abstract:
Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.
Abstract:
A reaming tool (10) includes a tubular body (12) having a nose portion (14) with a concave center. A plurality of blades (20) defining junk slots (24) therebetween extend axially behind the nose (14) and taper outwardly from the exterior of the tubular body. Rotationally leading edges of the blades (20) carry a plurality of cutting elements (30) from the axially leading ends. Selected surfaces and edges of the bear tungsten carbide, which may comprise crushed tungsten carbide. The shell of the nose (14) is configured to ensure drill out from the centerline thereof toward the side wall (16) of the tubular body. A method of drilling out a reaming tool is also disclosed.
Abstract:
A vending machine-type dispenser dispenses bottles and cans. A refrigerated storage cabinet includes stacked modular storage bins for holding bottles and cans. Selection indicators with easily changeable flavor indicators are provided on the unit to permit a user to select a bottle or can from a specified bin. Specified bins can be selectively locked out to prevent vending if desired. Bottles and cans can be stored and vended from the same bin without making any adjustments. A friction fabric and biased flaps slow the cans or bottles as they travel from the storage bins to an illuminated dispensing location to reduce jarring the cans and bottles as they are vended.
Abstract:
Methods and apparatus provide for: a base on which a substrate may be releasably coupled; a moving belt located with respect to the base such that a contact surface thereof is operable to remove material from a top surface of the substrate; and a plurality of actuators, at least two of which are independently controllable, located with respect to the base and the moving belt such that a corresponding plurality of pressure zones are defined to provide pressure between the moving belt and the top surface of the substrate.
Abstract:
An anodic bonding apparatus includes: a first bonding plate mechanism operable to engage a first material sheet, and to provide at least one of controlled heating, voltage, and cooling thereto; a second bonding plate mechanism operable to engage a second material sheet, and to provide at least one of controlled heating, voltage, and cooling thereto; a pressure mechanism operatively coupled to the first and second bonding plate mechanisms and operable to urge the first and second bonding plate mechanisms toward one another to achieve controlled pressure of the first and second material sheets against one another along respective surfaces thereof; a control unit operable to produce control signals to the first and second bonding plate mechanisms and the pressure mechanism to provide heating, voltage, and pressure profiles sufficient to achieve anodic bonding between the first and second material sheets.
Abstract:
A reaming tool includes a tubular body having a nose portion with a concave center. A plurality of blades defining junk slots therebetween extend axially behind the nose and taper outwardly from the exterior of the tubular body. Rotationally leading edges of the blades carry a plurality of cutting elements from the axially leading ends. Selected surfaces and edges of the bear tungsten carbide, which may comprise crushed tungsten carbide. The shell of the nose is configured to ensure drillout from the centerline thereof toward the side wall of the tubular body. A method of drilling out a reaming tool is also disclosed.
Abstract:
An anodic bonding apparatus includes: a first bonding plate mechanism operable to engage a first material sheet, and to provide at least one of controlled heating, voltage, and cooling thereto; a second bonding plate mechanism operable to engage a second material sheet, and to provide at least one of controlled heating, voltage, and cooling thereto; a pressure mechanism operatively coupled to the first and second bonding plate mechanisms and operable to urge the first and second bonding plate mechanisms toward one another to achieve controlled pressure of the first and second material sheets against one another along respective surfaces thereof; a control unit operable to produce control signals to the first and second bonding plate mechanisms and the pressure mechanism to provide heating, voltage, and pressure profiles sufficient to achieve anodic bonding between the first and second material sheets.
Abstract:
Methods for producing optical fibers along nonlinear paths include incorporating fluid bearings. An optical fiber is drawn from a preform along a first pathway, contacted with a region of fluid cushion of a fluid bearing, and redirected along a second pathway as the fiber is drawn across said region of fluid cushion.