Abstract:
A hybrid power plant including a plurality of power sources and controllers, a hybrid plant controller, and a computing system. The controllers operate the power sources according to operating set points. The hybrid plant controller transmits the operating set points to the controllers. The computing system is coupled to the hybrid plant controller and receives a first set of input parameters from a first subscriber, and carries out a first level of services to which the first subscriber subscribes to determine operating parameters for the first subscriber. The computing system receives a second set of input parameters from a second subscriber and carries out a second level of services to which the second subscriber subscribes to determine operating parameters for the second subscriber. The computing system then computes the operating set points based on aggregate operating parameters for the first and second subscribers.
Abstract:
A method for detecting an anomaly in an induction machine (10) includes obtaining or receiving a signal from the induction machine; processing the signal so as to obtain a low frequency signal, then rectifying the low frequency signal; and, declaring if the anomaly is present, based on the rectified low frequency signal. A system for detecting anomalies is also disclosed.
Abstract:
A contactless power transfer system for a mobile asset is presented. The system includes a primary loop disposed adjacent to a location that is coupled to a power source. A secondary receiving coil is disposed on the mobile asset and coupled to a traction motor for receiving power from the primary loop. The power transfer system further includes a field-focusing element that can focus a magnetic field from the primary loop onto the secondary receiving coil, the field-focusing element having a non-linear current distribution.
Abstract:
A contactless power transfer system for a mobile asset is presented. The system includes a primary loop disposed adjacent to a location that is coupled to a power source. A secondary receiving coil is disposed on the mobile asset and coupled to a traction motor for receiving power from the primary loop. The power transfer system further includes a field-focusing element that can focus a magnetic field from the primary loop onto the secondary receiving coil, the field-focusing element having a non-linear current distribution.
Abstract:
A method of monitoring health of a mechanical drive train is provided. The method includes obtaining voltage and current signals from at least one phase of an electrical machine coupled with the mechanical drive train. The method also includes representing the electrical machine having a non-sinusoidal flux distribution as a combination of a plurality of harmonic order sinusoidally distributed virtual electrical machines based on the obtained voltage and current signals. The method further includes determining a torque profile associated with one or more combinations of the sinusoidally distributed virtual electrical machines. Finally, the method includes detecting the presence of an anomaly in the mechanical drive train based on the torque profile or spectrum.
Abstract:
A system and method are provided for correction of parameters used in determination of stator turn faults of an induction motor. An embodiment may include determining a residual impedance and/or a residual voltage of the motor, and correcting a normalized cross-coupled impedance based on the residual impedance and residual voltage. Additional embodiments may include measuring an operating temperature of the motor and determining a negative sequence impedance of the motor based on the temperature Another embodiment may include measuring voltages and currents of the motor and determining phasors for the voltages and currents using compensation for variations from a nominal frequency of the motor.
Abstract:
A system and method for identifying turn faults in a stator of a motor are provided. The method includes determining a normalized cross-coupled impedance from the symmetrical components of measured voltages and currents of the motor. Additionally, the normalized cross-coupled impedance may be normalized to a negative sequence impedance. The negative sequence impedance may be determined through a regression analysis using parameters of the motor, such as line-to-line voltage, horsepower, and number of poles. A system is provided that includes a device having a memory and processor configured to determine a normalized cross- coupled impedance, compare the normalized cross-coupled impedance to one or more thresholds, and trigger and alarm and/or trip the motor
Abstract:
Methods and systems are provided for an engine (110). A condition of the engine (110) may be diagnosed based on information provided by signals (170) from a generator (120) operationally connected to the engine (110) and/or other signals (160, 162) associated with the engine (110). Different types of degradation may be distinguished based on discerning characteristics within the information. Thus, a degraded engine (110) component may be identified in a manner that reduces service induced delay.
Abstract:
A system and method are provided for correction of parameters used in determination of stator turn faults of an induction motor. An embodiment may include determining a residual impedance and/or a residual voltage of the motor, and correcting a normalized cross-coupled impedance based on the residual impedance and residual voltage. Additional embodiments may include measuring an operating temperature of the motor and determining a negative sequence impedance of the motor based on the temperature Another embodiment may include measuring voltages and currents of the motor and determining phasors for the voltages and currents using compensation for variations from a nominal frequency of the motor.