Abstract:
An equipment cabinet (2) includes a front wall (4), a side wall (6,8), and an equipment rack (20) having a width (28) and a front face plane (32). The front wall includes a front opening (16) having a width (18). The width of the rack is approximately equal to or larger than the width of the front opening. A space (14) is disposed between the rack and the side wall, and between the rack and the front wall. A mounting bracket (40) includes a plate (42) and a protrusion (44), wherein the plate is coupled to one of the rack, the front wall and the side wall. The protrusion is disposed in the space, and includes a substantially planar surface (45) that is neither parallel to, nor in the same plane as, the front face plane. A patch panel (50), an adapter module (54), RFID components (60), or an RFID reader and/or reader antenna (64), may be coupled to the protrusion.
Abstract:
Embodiments of a method of fabricating a micro-reactor comprise providing a base layer comprising glass or glass ceramic material, providing a plurality of layers comprising glass or glass ceramic material, adhering the plurality of layers together to form a multilayer substrate, cutting a serpentine pattern of channels into the multilayer substrate, forming a plurality of serpentine layers by separating the serpentine patterned multilayer substrate, and forming a micro-reactor by bonding together the base layer, at least one serpentine layer, and one or more additional layers.
Abstract:
A localized deposition system is provided comprising a substrate support, a feed material supply, a feedstock laser source, a substrate laser source, and a deposition control system. The feedstock laser source is configured to heat feed material positioned for localized deposition on the deposition surface of the substrate. The substrate laser source is configured to heat a localized portion of the substrate. The deposition control system is programmed to synchronize the relative movement between the deposition surface of the substrate and the localized deposition position of the feed material supply with operation of the feedstock laser source, the substrate laser source, and the feed material supply to execute a deposition operation. Methods of localized deposition are also provided.
Abstract:
A method of sealing a plurality of frame-like frit walls disposed between two substrates. The frit walls are arranged in rows and columns and divided into groups, each group being sealed by a separate laser beam. Several strategies are disclosed for the order in which the frit walls are heated and sealed by a laser beam to optimize the efficiency of the sealing process.
Abstract:
A sealing device and method are described herein that can be used to manufacture a hermetically sealed glass package. In one embodiment, the hermetically sealed glass package is suitable to protect thin film devices which are sensitive to the ambient environment (e.g., oxygen, moisture) . Some examples of such glass packages are organic emitting light diode (OLED) displays, sensors, and other optical devices. The present invention is demonstrated using an OLED display as an example.
Abstract:
A fluid distribution or fluid extraction structure for honeycomb-substrate based falling film reactors is provided, the structure comprising a one or two-piece non-porous honeycomb substrate having a plurality of cells extending in parallel in a common direction from a first end of the substrate to a second and divided by cell walls, and a plurality of lateral channels extending along a channel direction perpendicular to the common direction, the channels defined by the absence of cell walls or the breach of cell walls along the channel direction, the channels being closed or sealed to fluid passage in the common direction but open to the exterior of the structure through one or more ports in a side of the structure, the channels being in fluid communication with the plurality of cells via holes or slots extending through respective cell walls, the holes or slots having a width and a length, the width being equal to or less than the length, and the width at widest being less than 150µm. Methods of fabrication are also disclosed.
Abstract:
A method of separating a sheet of coated brittle material comprises the steps of providing a sheet of layered brittle material comprising a brittle layer and a coating material adhered to a surface of the brittle layer and applying a laser along a separation line in the sheet, thereby cutting the coating material and separating the brittle layer by inducing a stress fracture therein.
Abstract:
A method of sealing a plurality of frame-like frit walls disposed between two substrates. The frit walls are arranged in rows and columns and divided into groups, each group being sealed by a separate laser beam. Several strategies are disclosed for the order in which the frit walls are heated and sealed by a laser beam to optimize the efficiency of the sealing process.
Abstract:
Superoleophobic substrates (110) and methods of forming same are disclosed. The methods include providing a laser-ablatable substrate (10) comprising glass and directing a laser beam (122) to the substrate surface (12) and laser-ablating at least a portion thereof to form an array of spaced-apart micropillars (232) having sidewalls (233). The laser beam is provided with sufficient energy to form on the sidewalls an irregular rough surface with re-entrant microscale and nanoscale features that render the substrate surface superoleophobic when coated with a low-surface-energy coating (246).
Abstract:
A method for closing the holes on the end face of a nano-engineered fiber having a core, a cladding with non-periodically disposed voids, and at least one of a coating and a buffer, comprises the steps of: (i) cleaving the fiber portion, thereby forming a cleaved end face; and (ii) applying a predetermined amount of energy via a laser beam to the cleaved end face, the amount of energy being sufficient to collapse and seal the voids exposed at the cleaved end face only to a depth of less than 11 µm.