Abstract:
Accurately quantifying optical absorption coefficient using acoustic spectra of photoacoustic signals. Optical absorption is closely associated with many physiological parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of non-fluorescent molecules. A sample is illuminated by, for example, a pulsed laser and following the absorption of optical energy, a photoacoustic pressure is generated via thermo-elastic expansion. The acoustic waves then propagate and are detected by a transducer. The optical absorption coefficient of the sample is quantified from spectra of the measured photoacoustic signals. Factors, such as system bandwidth and acoustic attenuation, may affect the quantification but are canceled by dividing the acoustic spectra measured at multiple optical wavelengths.
Abstract:
Noninvasively imaging biological tissue using a handheld device. A light pulse is focused into a predetermined area inside an object using a flexibly mounted cantilever beam, acoustic waves emitted by the object in response to the at least one light pulse are detected by a transducer, and an image of the predetermined area inside the object is generated based on a signal generated by the transducer representative of the acoustic waves.
Abstract:
Accurately quantifying optical absorption coefficient using acoustic spectra of photoacoustic signals. Optical absorption is closely associated with many physiological parameters, such as the concentration and oxygen saturation of hemoglobin, and it can be used to quantify the concentrations of non-fluorescent molecules. A sample is illuminated by, for example, a pulsed laser and following the absorption of optical energy, a photoacoustic pressure is generated via thermo-elastic expansion. The acoustic waves then propagate and are detected by a transducer. The optical absorption coefficient of the sample is quantified from spectra of the measured photoacoustic signals. Factors, such as system bandwidth and acoustic attenuation, may affect the quantification but are canceled by dividing the acoustic spectra measured at multiple optical wavelengths.
Abstract:
Generating an optical-phase conjugation of ultrasonically-modulated diffuse light emitted by a scattering medium includes illuminating the medium with a light beam from a coherent light source, modulating the diffuse light transmitted through the medium with an ultrasonic wave focused on a region of interest within the medium, and retro-reflectively illuminating the medium using a phase-conjugated copy of the diffuse light that was ultrasonically modulated
Abstract:
A reflection-mode photoacoustic endoscope includes a light source configured to emit a light pulse, a signal detection or transmission unit configured to detect or emit an ultrasonic pulse, and a rotatable reflector. The rotatable reflector is configured to reflect at least one of the light pulse and the ultrasonic pulse into a target area of an object, and reflect a response signal to the signal detection unit. The response signal is one of a photoacoustic wave generated by the object responsive to the light pulse and an ultrasonic pulse echo generated by the object responsive to the ultrasonic pulse.
Abstract:
A confocal photoacoustic microscopy system includes a laser configured to emit a light pulse, a focusing assembly configured to receive the light pulse and to focus the light pulse into an area inside an object, an ultrasonic transducer configured to receive acoustic waves emitted by the object in response to the light pulse, and an electronic system configured to process the acoustic waves and to generate an image of the area inside the object. The focusing assembly is further configured to focus the light pulse on the object in such a way that a focal point of the focusing assembly coincides with a focal point of the at least one ultrasonic transducer.
Abstract:
Observing intracranial physiology includes inserting a bladder at least partially filled with a fluid into a subdural region of interest within a subject, wherein the bladder is coupled in flow communication with a means of indicating a pressure exerted on the bladder within the region of interest. Embodiments also include non-invasively interrogating the means of indicating to determine the pressure exerted on the bladder
Abstract:
A reflection-mode photoacoustic endoscope includes a light source configured to emit a light pulse, a signal detection or transmission unit configured to detect or emit an ultrasonic pulse, and a rotatable reflector. The rotatable reflector is configured to reflect at least one of the light pulse and the ultrasonic pulse into a target area of an object, and reflect a response signal to the signal detection unit. The response signal is one of a photoacoustic wave generated by the object responsive to the light pulse and an ultrasonic pulse echo generated by the object responsive to the ultrasonic pulse.
Abstract:
A confocal photoacoustic microscopy system includes a laser configured to emit a light pulse, a focusing assembly configured to receive the light pulse and to focus the light pulse into an area inside an object, an ultrasonic transducer configured to receive acoustic waves emitted by the object in response to the light pulse, and an electronic system configured to process the acoustic waves and to generate an image of the area inside the object. The focusing assembly is further configured to focus the light pulse on the object in such a way that a focal point of the focusing assembly coincides with a focal point of the at least one ultrasonic transducer.
Abstract:
The present invention is directed toward a humanized neutralizing monoclonal antibody to hepatocyte growth factor, a pharmaceutical composition comprising same, and methods of treatment comprising administering such a pharmaceutical composition to a patient.