摘要:
Skin-contact products with a transpiration function such as medical devices or medicinal products, of which face masks, aspirators, ventilators, breast pumps or wound dressings are examples are described especially a skin-contact product with a transpiration function with an improved microclimate at a patient interface material -skin contact area. In an embodiment a material system (10, 20, 30) is described that comprises a hydrophobic silicone base material (11, 21, 31) and a hydrophilic silicone material (12, 22, 32) that is combined with the hydrophobic base material (11, 21, 31). At least a part of the hydrophilic material (12, 22, 32) is in contact with a moist surface (50). The hydrophobic base material (11, 21, 31) provides mechanical and dynamical stability of the material system (10, 20, 30). The hydrophilic material (12, 22, 32) allows for uptake or for diffusion of moisture away from moist surface (50). The material system (10, 20, 30) is utilized to fabricate a patient interface material (41) and forehead pad (42) of a user or patient interface, such as face mask (40), for example, a patient interface mask for positive air pressure therapy. Furthermore, a novel composition for the preparation of hydrophilic silicone materials, suitable for use in the material system (10, 20, 30), is disclosed.
摘要:
This invention relates to medical, health care and non-medical devices comprising a rubbery or elastomeric polymer material taking up more than 5% by weight of water and at most 500% by weight of water after immersion in demineralized water at room temperature for a sufficient time to reach saturation. The material may be in the form of a foam, or in the form of a coating adapted for adhesion to a substrate, or in the form of a sheet, or in the form of a fiber, and may comprise: - repeating units from one or more hydrophobic organic monomers, and - repeating units from one or more monomers (a) being modified with one or more hydrophilic side groups.
摘要:
Skin-contact products with a transpiration function such as medical devices or medicinal products, of which face masks, aspirators, ventilators, breast pumps or wound dressings are examples are described especially a skin-contact product with a transpiration function with an improved microclimate at a patient interface material -skin contact area. In an embodiment a material system (10, 20, 30) is described that comprises a hydrophobic silicone base material (11, 21, 31) and a hydrophilic silicone material (12, 22, 32) that is combined with the hydrophobic base material (11, 21, 31). At least a part of the hydrophilic material (12, 22, 32) is in contact with a moist surface (50). The hydrophobic base material (11, 21, 31) provides mechanical and dynamical stability of the material system (10, 20, 30). The hydrophilic material (12, 22, 32) allows for uptake or for diffusion of moisture away from moist surface (50). The material system (10, 20, 30) is utilized to fabricate a patient interface material (41) and forehead pad (42) of a user or patient interface, such as face mask (40), for example, a patient interface mask for positive air pressure therapy. Furthermore, a novel composition for the preparation of hydrophilic silicone materials, suitable for use in the material system (10, 20, 30), is disclosed.
摘要:
Nitrogen-containing compounds are detected by chemically converting (210) them to nitrogen dioxide, and detecting (10) the amount of nitrogen dioxide. A semiconductor laser or light emitting diode (132) provides a modulated light (131) in the blue- violet-green wavelength range and a narrow bandwidth photo-acoustic sensor (10) detects the standing waves produced by the absorption of the light by the nitrogen dioxide. The photo-acoustic sensor (10) uses a resonant cavity (161, 182a-b) with a resonant frequency that corresponds to the modulation frequency of the light (131). For detecting nitric oxide, a surface chemical oxidation unit (210) is preferably used to convert the nitric oxide to nitrogen dioxide, using, for example potassium permanganate (KMnO4) filter, or a platinum (Pt) catalyst unit (260).
摘要:
A cushion member for a user interface device is provided. The cushion member is structured to provide a load distribution functionality responsive to the cushion member being donned by the user, wherein at least a portion of the cushion member has a local stiffness of less than or equal to 100 kPa/mm responsive to a stress increase on the cushion member of 1 kPa - 15 kPa.
摘要:
A replaceable unit (102) for use with an apparatus(100) that determines the level of nitric oxide in exhaled breath is described. The replaceable unit (102) comprises a conditioning section (116) for reducing the amount of water in air (124) exhaled by a user to produce a conditioned sample of air(130) for use in nitric oxide to nitrogen dioxide conversion.
摘要:
The present invention provides a new type of contrast agent which comprises metal nano-particles as well as the method of imaging therewith. The metal nano-particles are stable, biocompatible and can be coupled to bio-target-specific molecules for targeted visualization.
摘要:
A cushion member for a user interface device is provided. The cushion member is structured to provide a load distribution functionality responsive to the cushion member being donned by the user, wherein at least a portion of the cushion member has a local stiffness of less than or equal to 100 kPa/mm responsive to a stress increase on the cushion member of 1 kPa - 15 kPa.
摘要:
A method and apparatus of determining the level of exhaled nitric oxide (NO) is disclosed. The method involves measuring the level of exhaled NO (34) and the corresponding exhalation flow rate in one or more exhalations (30, 32) of a tidal breathing manoeuvre performed by a subject. The data is used with a model describing the flow dependence of exhaled NO to derive a value for exhaled NO corresponding to a fixed flow rate, especially to an exhaled NO level corresponding to a fixed flow rate of 50 ml/s. During the manoeuvre a variation in flow restriction (31) may be applied so as to vary the overall flow rate of exhalation. The method offers a simple and quick way to determine exhaled NO levels with good accuracy and is suitable for use with children.
摘要:
Nitrogen-containing compounds are detected by chemically converting (210) them to nitrogen dioxide, and detecting (10) the amount of nitrogen dioxide. A semiconductor laser or light emitting diode (132) provides a modulated light (131) in the blue- violet-green wavelength range and a narrow bandwidth photo-acoustic sensor (10) detects the standing waves produced by the absorption of the light by the nitrogen dioxide. The photo-acoustic sensor (10) uses a resonant cavity (161, 182a-b) with a resonant frequency that corresponds to the modulation frequency of the light (131). For detecting nitric oxide, a surface chemical oxidation unit (210) is preferably used to convert the nitric oxide to nitrogen dioxide, using, for example potassium permanganate (KMnO4) filter, or a platinum (Pt) catalyst unit (260).