Abstract:
Compositions comprising porphyrinic macrocycles and conjugated polymers such as polythiophene for use in organic electronic devices including solar cells are presented. Covalent linkage of a porphyrinic macrocycle to a polymer allows tuning of electronic and spectroscopic properties of conjugated polymers and can improve the heat stability of the system relative to a blended comparison. A composition comprising: at least one polymer comprising at least one porphyrinic macrocycle covalently linked to at least one conjugated polymer, wherein the porphyrinic macrocycle is metal-free is also presented. Inks can be formulated. Methods of making are provided.
Abstract:
Polythiophene copolymers having tunable work functions and oxidation voltage onset. The ratio of monomer can be varied to achieve the desired property for a particular application. One monomer can be unsubstituted thiophene. The copolymer microstructure can be random. Another monomer can be a 3-substituted thiophene such as 3-alkyl or a heteroatom substituted substituent. Heterojunction polymer photovoltaic cells can be fabricated with excellent voltage onset properties compared to devices having corresponding homopolymers.
Abstract:
Compositions for use in HIL/HTL applications include intrinsically conductive polymer, planarizing agent, and dopant, which are soluble in non-aqueous solvents. Block copolymers of regioregular alkyl/alkoxy- and aryl-substituted polythiophenes can be used. The compositions can be formed into thin films. Excellent efficiency and lifetime stability can be achieved.
Abstract:
Compositions for use in HIL/HTL applications include intrinsically conductive polymer, planarizing agent, and dopant, which are soluble in non-aqueous solvents. Block copolymers of regioregular alkyl/alkoxy- and aryl-substituted polythiophenes can be used. The compositions can be formed into thin films. Excellent efficiency and lifetime stability can be achieved.
Abstract:
Regioregular polythiophene polymers can be used in photovoltaic applications including copolymers and blends. The polymer can comprise heteroatoms in the side groups. Better efficiencies can be achieved.
Abstract:
Regioregular polythiophenes having heteroatoms in the substituents can be used in hole injection layer and hole transport layers for electroluminescent devices. Copolymers and organic oxidants can be used. Homopolymers can be used. Metallic impurities can be removed. The heteroatom can be oxygen and can be substituted at the 3-position. Advantages include versatility, synthetic control, and good thermal stability. Different device designs can be used.
Abstract:
A solved three-dimensional crystal structure of an HNF4g ligand binding domain polypeptide is disclosed, along with a crystal form of the HNF4g ligand binding domain. Methods of designing modulators of the biological activity of HNF4g, and other HNF4 ligand binding domain polypeptides are also disclosed
Abstract:
A solved three-dimensional crystal structure of a human PXR ligand binding domain polypeptide is disclosed, along with a crystal form of the PXR ligand binding domain. Orientations of the ligand SR12813 in the binding cavity are also disclosed. Additionally, methods of designing modulators of the biological activity of PXR, and other PXR ligand binding domain polypeptides, are also disclosed.
Abstract:
Electrostatic dissipation coatings based on regioregular polythiophenes including blends and block copolymers. The compositions can be soluble in organic solvents. Excellent film formation, transparency, stability, and conductivity control can be achieved.
Abstract:
Organic electronic devices, compositions, and methods are disclosed that employ electrically conductive nanowires and conducting materials such as conjugated polymers such as sulfonated regioregular polythiophenes which provide high device performance such as good solar cell efficiency. Devices requiring transparent conductors that are resilient to physical stresses can be fabricated, with reduced corrosion problems.