Abstract:
[Problem] To provide a conductive polymer for solid electrolyte capacitor having outstanding solubility in solvents or dispersibility in solvents and which can produce a capacitor having outstanding capacitor characteristics in high-temperature environments. [Means Used to Resolve the Problem] A conductive polymer (A) for solid electrolyte capacitor containing substituted polythiophene (P) having thiophene repeating units (D) substituted by a least one type of group (s) selected from a group made up of a polyether group (a) indicated in general formula (1); an alkoxy group (b) having 1 to 15 carbon atoms; an alkoxy alkyl group (c) indicated in general formula (2); an alkyl group (d) having 1 to 15 carbon atoms; and a group (e) indicated in general formula (3); as well as thiophene repeating units (E) wherein the hydrogen atoms at position 3 and position 4 on the thiophene ring have been substituted by group (s) and sulfo group (-SO3H) (f).
Abstract:
Materials for organic electronic devices including organic photovoltaic devices. An oligomer or polymer comprising: wherein R 1 , R 2 , R 3 , and R 4 are independently hydrogen or solubilizing groups. Monomers and ink compositions can be also prepared. The materials can be used in an OPV active layer and show excellent absorption properties with bathochromic shift.
Abstract:
Polymers which can be used in p-type materials for organic electronic devices and photovoltaic cells. Compounds, monomers, dimers, trimers, and polymers comprising formula (I) and/or formula (VIII); wherein A1 and A2 each independently comprise a fused ring system comprising at least two fused rings directly covalently linked to the pyrrole rings. Good photovoltaic efficiency and lifetime can be achieved. The R group can provide solubility, environmental stability, and fine tuning of spectroscopic and/or electronic properties. Different polymer microstructures can be prepared which encourage multiple band gaps and broad and strong absorptions. The carbonyl can interact with adjacent thiophene rings to provide backbone with rigidity, induce planarity, and reduce and/or eliminate intramolecular chain twisting defects.
Abstract:
A lighting system includes a plurality of organic light emitting diode (OLED) devices. By selecting the plurality of OLED devices, or by selectively controlling the plurality of OLED devices, the color characteristics of the lighting system can be tuned. The lifespan of the lighting system can be improved.
Abstract:
A lighting system includes a plurality of organic light emitting diode (OLED) devices. By selecting the plurality of OLED devices, or by selectively controlling the plurality of OLED devices, the color characteristics of the lighting system can be tuned. The lifetime of the lighting system can be improved.
Abstract:
Mosaic devices including an apparatus includes at least one electroluminescence (EL) device and a system substrate. The at least one EL device can be configured to be coupled mechanically and electrically to the system substrate. The system substrate can be configured to receive the at least one EL device at a non-discrete location or orientation. The system substrate can be a smart system substrate configured to automatically identify a device type. The EL device can be an area-emitting device such as an organic light emitting diode (OLED) device.
Abstract:
A sulfonated polymer comprising a 3 -substituted fused thienothiophene repeat unit, a composition comprising the polymer, a method of making the polymer, and a device comprising the polymer. The polymers can be used in hole injection or hole transport layers, or other applications in organic electronic devices.
Abstract:
A composition comprising a copolymer comprising DTP units for use in, for example, low band gap materials including uses in organic photovoltaic active layers. The band gap and other properties can be engineered by copolymerization methods including selection of monomer structure and ratio of monomer components. In addition, a dimer adapted for making alternating copolymers further comprising one first monomer moiety comprising at least one DTP moiety compound covalently linked to one second monomer moiety comprising at least one non-DTP moiety or a different DTP moiety. The composition can be copolymerized to form an alternating copolymer that can be further processed to form a polymeric film used in a printed organic electronic device. A series of novel alternating dithieno[3,2-b:2',3'-d]pyrrole (DTP)-based donor repeat unit copolymers were designed that would allow fabrication of materials with tailor made electronic and/or mechanical properties that can be easily manipulated through molecules chemical structure and potentially result in long term stability under ambient conditions that can be advantageous for use in organic electronics (e.g., OPVs, OLEDs, OFETs).
Abstract:
Improved methods of fullerene derivative production including use of less solvent, or elimination of solvent, as well as use of shorter reaction times and higher reaction temperatures. Methods useful for production of bis-, tris-, tetra-, penta-, and hexa- fullerene derivatives. Indene is a preferred derivative. The derivatives used in active layers for solar cell applications.
Abstract:
A device comprising: a transistor comprising: at least one source; at least one drain; at least one channel; at least one gate insulator comprising (i) a first surface defining a first side, and (ii) a second surface defining a second side and opposing the first surface and first side, wherein the source and the drain are disposed on the gate insulator first side; at least one gate disposed on the gate insulator second side; wherein the source, the drain, or both comprise at least one polymer adsorbed to the source, drain, or both to minimize contact resistance between the source and the channel, the drain and the channel, or both. The polymer can comprise conjugated repeat units, can be a polythiopene, and also can be a regioregular polythiopene.