Abstract:
Rotary valve system for controlling communication with a port in an internal combustion engine which, in one disclosed embodiment, has a crankshaft, compression and expansion pistons connected to the crankshaft for reciprocating movement within compression and expansion chambers, a combustion chamber in which air from the compression chamber is combined with fuel and burned to produce an increased gas volume. The valve system has an outer valve member which is rotatively mounted in a bore and has an opening which moves into and out of communication with the port as the outer valve member rotates, an inner valve member rotatably mounted within the outer outer valve member with an opening at least partly overlapping the opening in the outer valve member, a flange extending along one edge of the opening in the inner valve member and through the opening in the outer valve member for sealing engagement with the wall of the bore, and means for effecting rotation of the valve members to change the degree of overlap between the openings and thereby control the timing and duration of communication between the openings and the port.
Abstract:
Internal combustion engine and method with compression and expansion chambers of variable volume, a combustion chamber, a variable intake valve for controlling air intake to the compression chamber, a variable outlet valve for controlling communication between the compression chamber and the combustion chamber, means for introducing fuel into the combustion chamber to form a mixture of fuel and air which burns and expands in the combustion chamber, a variable inlet valve for controlling communication between the combustion chamber and the expansion chamber, a variable exhaust valve for controlling exhaust flow from the expansion chamber, means for monitoring temperature and pressure conditions, and a computer responsive to the temperature and pressure conditions for controlling opening and closing of the valves and introduction of fuel into to the combustion chamber to optimize engine efficiency over a wide range of engine load conditions. The relative volumes of the compression and expansion chambers and the timing of the valves are such that the pressure in the combustion chamber remains substantially constant throughout the operating cycle of the engine, and exhaust pressures are very close to atmospheric pressure regardless of the load on the engine. The engine runs so quietly and burns so cleanly that in some applications it may not require a muffler and/or a catalytic converter.
Abstract:
Constant pressure internal combustion engine having an elongated combustion chamber which in some embodiments is folded back upon itself and has a rough, twisting interior side wall, a fuel inlet for introducing fuel into the chamber, a compression chamber in communication with the combustion chamber, means for varying the volume of the compression chamber and combustion chamber to form a mixture of fuel and air that burns as it travels through the chamber and is further mixed by the rough, twisting side wall of the chamber, an expansion chamber in communication with the combustion chamber, and an output member in the expansion chamber which is driven by pressure produced by the burning mixture, with the means for varying the volume of the compression chamber and the output member in the expansion chamber being connected together for movement in concert such that the pressure remains substantially constant within the combustion chamber. A gas flow separator near the fuel inlet forms a one or more smaller volumes within the combustion chamber where the fuel can mix and burn with only a portion of the air introduced into the chamber. Long, sharp protrusions extend inwardly from the wall of the combustion chamber and form hot spots which help to provide complete combustion of the fuel mixture throughout the combustion chamber, and these protrusions, together with flow turbulators within the chamber, promote complete mixing and, hence, combustion of the fuel and air.
Abstract:
Internal combustion engine and method with compression and expansion chambers of variable volume, a combustion chamber, a variable intake valve for controlling air intake to the compression chamber, a variable outlet valve for controlling communication between the compression chamber and the combustion chamber, means for introducing fuel into the combustion chamber to form a mixture of fuel and air which burns and expands in the combustion chamber, a variable inlet valve for controlling communication between the combustion chamber and the expansion chamber, a variable exhaust valve for controlling exhaust flow from the expansion chamber, means for monitoring temperature and pressure conditions, and a computer responsive to the temperature and pressure conditions for controlling opening and closing of the valves and introduction of fuel into to the combustion chamber to optimize engine efficiency over a wide range of engine load conditions. In some disclosed embodiments, the relative volumes of the compression and expansion chambers and the timing of the valves are such that the pressure in the combustion chamber remains substantially constant throughout the operating cycle of the engine, and exhaust pressures are very close to atmospheric pressure regardless of the load on the engine. In others, the temperature within the combustion chamber is maintained at a substantially constant level throughout the operating range of the engine, and the power produced by the engine is determined by the amount of air passing through the engine. The engine runs so quietly and burns so cleanly that in some applications it may not require a muffler and/or a catalytic converter.