Abstract:
A method for computer aided detection (CAD) and classification of regions of interest detected within HRCT medical image data includes post-CAD machine learning techniques applied to maximize specificity and sensitivity of identification of a region/volume as being a nodule or non-nodule. The regions are identified by a CAD process, and automatically segmented. A feature pool is identified and extracted from each segmented region, and processed by genetic algorithm to identify an optimal feature subset, which subset is used to train the support vector machine to classify candidate region/volumes found within non-training data.
Abstract:
A method for computer aided detection (CAD) and classification of regions of interest detected within HRCT medical image data includes post-processing machine learning to maximize specificity and sensitivity of the classification to realize a reduction in number of false positive detections reported. The method includes training a classifier on a set of medical image training data selected to include a number of true and false regions, wherein the true and false regions are identified by a CAD process, and automatically segmented, wherein the segmented training regions are reviewed by at least one specialist to classify each training region for its ground truth, i.e., true or false, essentially qualifying the automatic segmentation, wherein a feature pool is identified and extracted from each segmented region, and wherein the pool of features is processed by genetic algorithm to identify an optimal feature subset, which subset is used to train a support vector machine, detecting, within non- training medical image data, regions that are candidates for classification, segmenting the candidate regions, extracting a set of features from each segmented candidate regions and classifying the candidate region using the support vector machine after training in accordance with the optimal feature subset, and processing the set of candidate features.
Abstract:
A computer-aided diagnosis (CAD) technique matches an image of an undiagnosed tumor against respective images of a group of tumors of known pathology, either malignant or benign(104, 208). Either a database of malignant tumor images is designated, or a database of benign tumors is designated (112). The closest group of reference tumor images in terms of similarity is found from the designated database (228). Similarity between the test image and the group of reference images is determined by the smallest Mahalanobis distance between the test and reference images (216). The group is altered by a genetic algorithm to include different images that are then tested for distance, this process being iteratively executed subject to a stopping criterion (216, 220, 224, 228).
Abstract:
This invention relates to a method and device for case-based decision support. It proposes that a case-based decision support system is trained on inputs from several radiologists in order to have a "baseline" system, and then the system provides an option to a radiologist to refine the baseline system based on his/her inputs which either refine weights of features for similarity distance computation directly or provide new similarity ground truth clusters. By enabling modifying the similarity distance computation based on user inputs, this invention adapts similarity ground truth to different users with different experience and/or different opinions.
Abstract:
The invention relates to search for cases in a database. According to the proposed method and apparatus, similarity matching is performed between an input case and a set of cases in an initial search to receive similar cases by- using a given matching criterion. Then statistics on image and non- image-based features associated with the similar cases are calculated and presented to the user with the similar cases. In a search refinement the similar cases are refined by additional features that are determined by the user based on the statistics. The search refinement can be iterative depending on the user's need.
Abstract:
Methods are herein provided for decision support in diagnosis of a disease in a subject, and for extracting features from a multi-slice data set. Systems for computer- aided diagnosis are provided. The systems take as input a plurality of medical data and produces as output a diagnosis based upon this data. The inputs may consist of a combination of image data and clinical data. Diagnosis is performed through feature selection and the use of one or more classifier algorithms.
Abstract:
Optimizing example-based computer-aided diagnosis (CADx) is accomplished by clustering volumes-of-interest (VOIs) (116) in a database (120) into respective clusters according to subjective assessment of similarity (S220). An optimal set of volume-of-interest (VOI) features is then selected for fetching examples such that objective assessment of similarity, based on the selected features, clusters, in a feature space, the database VOIs so as to conform to the subjectively -based clustering (S230). The fetched examples are displayed alongside the VOI to be diagnosed for comparison by the clinician. Preferably, the displayed example is user-selectable for further display of prognosis, therapy information, follow up information, current status, and/or clinical information retrieved from an electronic medical record (S260).
Abstract:
Automated diagnostic decision support (104) in the imaging of potentially-malignant lesions is distributed and streamlined to protect patient confidentiality and to lower bandwidth and transaction costs. At a client hospital site (108a, 108b) , a software agent (132) monitors a database and responsively accesses an image of a lesion and ground truth that the lesion is malignant/benign. After computing at least one feature of the lesion based on the image) , the software agent transmits the feature (s) and ground truth externally from the hospital, to a central diagnostic decision support server . When a client hospital site needs automatic diagnostic support, the lesion feature (s) of the new patient are likewise extracted and transmitted to the external server in a query message. The classifier located on the server will return a diagnosis (benign/malignant) and a confidence level .
Abstract:
Methods for performing genetic algorithm-based feature selection are provided herein. In certain embodiments, the methods include steps of applying multiple data splitting patterns to a learning data set to build multiple classifiers to obtain at least one classification result; integrating the at least one classification result from the multiple classifiers to obtain an integrated accuracy result; and outputting the integrated accuracy result to a genetic algorithm as a fitness value for a candidate feature subset, in which genetic algorithm-based feature selection is performed.
Abstract:
Methods and apparatus for training a system for developing a process of data mining, false positive reduction, computer-aided detection, computer-aided diagnosis and artificial intelligence are provided. A method includes choosing a training set from a set of training cases using systematic data scaling and creating a classifier based on the training set using a classification method. The classifier yields fewer false positives. The method is suitable for use with a variety of data mining techniques including support vector machines, neural networks and decision trees.