Abstract:
A light duct elbow having two light conduits capable of transporting light along two different propagation directions. A light diverter is located between the light conduits and has a reflector for directing light along the light conduits. In the light duct elbow, a light ray propagating within a collimation angle in the first light conduit that intersects the reflector is diverted to a second light ray propagating within the collimation angle in the second light conduit.
Abstract:
A light engine having an array of light horns. Each light horn has a narrow end, an open wide end, and side walls extending from the narrow end to the wide end with the side walls shaped as truncated pyramids. One or more LEDs are located at the narrow end of each of the light horns with each of the light horns providing substantially collimated light from the LEDs at the wide end.
Abstract:
The present disclosure describes light delivery and distribution components of a ducted lighting system having a cross-section that includes at least one curved portion and a light source. The delivery and distribution system (that is, light duct and light duct extractor) can function effectively with any light source that is capable of delivering light which is substantially collimated about the longitudinal axis of the light duct, and which is also preferably substantially uniform over the inlet of the light duct.
Abstract:
The disclosure generally relates to concentrating daylight collectors and in particular to concentrating daylight collectors useful for interior lighting of a building. The concentrating daylight collectors generally include a cassegrain-type concentrator section that provides for a full-tracking solar collector with one moving part and with a high efficiency of coupling of collected solar irradiation to a stationary duct. In some cases, the disclosed concentrating daylight collectors can be used more conventionally, such as for directing sunlight onto a photovoltaic cell for generation of electrical power, or an absorbing surface for extraction of thermal energy.
Abstract:
The disclosure generally relates to highly efficient light duct light splitters that are capable of splitting the light propagating within a light duct into two different ducts, with nearly 100 percent efficiency. In particular, the described light splitters are configured in a "Tee" shape with a reflective splitter element.
Abstract:
An optical system includes a display, a reflective polarizer, and a glare trap. The glare trap includes a plurality of slats having a length L and a width W, L/W ≥ 10. The slats form a plurality of elongated slots therebetween substantially filled with air. The reflective polarizer has an average optical reflectance of at least 40% for a first polarization state and an average optical transmittance of at least 40% for an orthogonal second polarization state. For each of the first and second polarization states, the glare trap has an average specular optical transmittance of between about 20% to about 80% and an average total optical reflectance of less than about 20%. For at least one wavelength in the visible wavelength range, an optical transmittance of the glare trap includes a first transmittance peak at a first peak angle with a corresponding FWHM of less than about 30 degrees.
Abstract:
A computer-implemented method of designing an organic light emitting diode (OLED) device having a resonance layer. The method includes calculating the reflectance of red, green, and blue spectrums of the OLED device to generate, respectively, red, green, and blue reflectance values. A thickness and possibly a material of the resonance layer is selected such that the red, green, and blue reflectance values are substantially equal to one another or within a particular deviation of one another. The OLED device can have multiple resonance layers, in which case the thicknesses and materials of the resonance layers are selected to provide substantially equal red, green, and blue reflectances.
Abstract:
A nanostructured article having a first layer with a nanostructured surface is described. The nanostructured surface includes a plurality of pillars extending from a base surface of the first layer. The pillars have an average height greater than an average lateral dimension of the pillars. An average center-to-center spacing between pillars is no more than 2000 nm. The average lateral dimension is no less than 50 nm. Each pillar in the plurality of pillars has at least a lower portion and an upper portion where the lower portion is between the upper portion and the base surface, and the upper and lower portions have differing compositions. The nanostructured article includes a second layer disposed over the plurality of pillars and extending continuously to the base surface.
Abstract:
The present disclosure describes light delivery and distribution components of a light duct that can be used as a luminaire, such as a bollard-style luminaire that can be useful for the illumination of pedestrian crosswalks. The bollard luminaire includes a design that generally confines light to illuminate the crosswalk and the pedestrian in the crosswalk, such that light that could produce glare for the pedestrian and/or a driver approaching the crosswalk is minimized. The delivery and distribution system (i.e., light duct and light duct extractor) can function effectively with any light source that is capable of delivering light which is substantially collimated about the longitudinal axis of the light duct, and which is also preferably substantially uniform over the inlet of the light duct.
Abstract:
The present disclosure describes light delivery and distribution components of a light duct that can be used as a luminaire, such as a bollard-style luminaire that can be useful for the illumination of pedestrian crosswalks, the light engine useful in the luminaire, and methods for making the light engine and the luminaire. The present disclosure further describes methods for crosswalk illumination using the bollard-style luminaires, and methods of communication between bollard luminaires. The bollard luminaire includes a design that generally confines light to illuminate the crosswalk and the pedestrian in the crosswalk, such that light that could produce glare for the pedestrian and/or a driver approaching the crosswalk is minimized.