Abstract:
The integration of cluster metal-organic chemical vapor deposition (MOCVD) and hydride vapor phase epitaxy (HVPE) reactors with other process chambers is described. For example, a method of fabricating a light-emitting diode (LED) structure described herein includes forming, in a first chamber of a cluster tool, a P-type group III-V material layer above a substrate. Without removing the substrate from the cluster tool a metal contact layer is formed directly on the P-type group III-V material layer in a second chamber of the cluster tool.
Abstract:
Methods are provided for removing conductive materials from a substrate surface. In one aspect, a method includes providing a substrate comprising dielectric feature definitions formed between substrate field regions, a barrier material disposed in the feature definitions and on the substrate field regions, and a conductive material disposed on the barrier material, polishing the substrate to substantially remove a bulk portion of the conductive material with a direct current bias, and polishing the substrate to remove a residual portion of the conductive material with a pulse bias.
Abstract:
A method and apparatus for local polishing and deposition control in a process cell is generally provided. In one embodiment, an apparatus for electrochemically processing a substrate is provided that selectively polishes discrete conductive portions of a substrate by controlling an electrical bias profile across a processing area, thereby controlling processing rates between two or more conductive portions of the substrate.
Abstract:
Compositions and methods for processing a substrate having a conductive material layer disposed thereon are provided. In one embodiment, a composition for processing a substrate having a conductive material layer disposed thereon is provided which composition includes an acid based electrolyte, a chelating agent, a corrosion inhibitor, a passivating polymeric material, a pH adjusting agent, a solvent, and a pH between about 3 and about 10. The composition is used in a method to form a passivation layer on the conductive material layer, abrading the passivation layer to expose a portion of the conductive material layer, applying a bias to the substrate, and removing the conductive material layer.
Abstract:
Methods for polishing tungsten are provided. During ECMP, increasing the voltage to the pad is not always enough to increase the polishing rate. When polishing tungsten, simply increasing the applied voltage will, in some cases, actually decrease the removal rate. By increasing the down force pressure between the polishing pad and the substrate, the applied voltage, and the rotation speed of the substrate and the polishing pad, the tungsten removal rate will also increase.
Abstract:
Method and apparatus for process control of electro-processes. The method includes electro-processing a wafer by the application of two or more biases and determining an amount of charge removed as a result of each bias, separately. In one embodiment, an endpoint is determined for each bias when the amount of charge removed for a bias substantially equals a respective target charge calculated for the bias.
Abstract:
A method and apparatus is provided for depositing and planarizing a material layer on a substrate. In one embodiment, an apparatus is provided which includes a partial enclosure, a permeable disc, a diffuser plate and optionally an anode. A substrate carrier is positionable above the partial enclosure and is adapted to move a substrate into and out of contact or close proximity with the permeable disc. The partial enclosure and the substrate carrier are rotatable to provide relative motion between a substrate and the permeable disc. In another aspect, a method is provided in which a substrate is positioned in a partial enclosure having an electrolyte therein at a first distance from a permeable disc. A current is optionally applied to the surface of the substrate and a first thickness is deposited on the substrate. Next, the substrate is positioned closer to the permeable disc and a second thickness is deposited on the substrate. During the deposition, the partial enclosure and the substrate are rotated relative one another.
Abstract:
A method and apparatus are provided for planarizing a material layer on a substrate. In one aspect, a method is provided for processing a substrate including forming a passivation layer on a substrate surface, polishing the substrate in an electrolyte solution, applying an anodic bias to the substrate surface, and removing material from at least a portion of the substrate surface. In another aspect, an apparatus is provided which includes a partial enclosure, polishing article, a cathode, a power source, a substrate carrier movably disposed above the polishing article, and a computer based controller to position a substrate in an electrolyte solution to form a passivation layer on a substrate surface, to polish the substrate in the electrolyte solution with the polishing article, and to apply an anodic bias to the substrate surface or polishing article to remove material from at least a portion of the substrate surface.
Abstract:
Apparatus and method for control of epitaxial growth temperatures during manufacture of light emitting diodes (LEDs). Embodiments include measurement of a substrate and/or carrier temperature during a recipe stabilization period; determination of a temperature drift based on the measurement; and modification of a growth temperature based on a temperature offset determined in response to the temperature drift exceeding a threshold criteria. In an embodiment, a statistic derived from a plurality of pyrometric measurements made during the recipe stabilization over several runs is employed to offset each of a set of growth temperatures utilized to form a multiple quantum well (MQW) structure.
Abstract:
Embodiments of the present invention provide methods and apparatus for surface coatings applied to process chamber components utilized in chemical vapor deposition processes. In one embodiment, the apparatus provides a showerhead apparatus comprising a body, a plurality of conduits extending through the body, each of the plurality of conduits having an opening extending to a processing surface of the body, and a coating disposed on the processing surface, the coating being about 50 microns to about 200 microns thick and comprising a coefficient of emissivity of about 0.8, an average surface roughness of about 180 micro-inches to about 220 micro-inches, and a porosity of about 15% or less.