Abstract:
A method and associated apparatus for electro-chemically depositing a metal film on a substrate having a metal seed layer. The apparatus comprises a substrate holder that holds the substrate. The electrolyte cell receives the substrate in a processing position. The actuator is connected to the substrate holder and adjustably positions the substrate relative to the electrolyte cell. The method involves electro-chemically depositing a metal film on a substrate having a metal seed layer comprising disposing the substrate in an electrolyte cell that is configured to receive the substrate. The method comprises adjustably positioning the substrate relative to the electrolyte cell.
Abstract:
An electro-chemical plating system is described. A method is performed by the electro-chemical plating system in which a seed layer formed on a substrate is immersed into an electrolyte solution. In one aspect, a substrate is immersed in the electrochemical plating system by tilting the substrate as it enters the electrolyte solution to limit the trapping or formation of air bubbles in the electrolyte solution between the substrate and the substrate holder. In another aspect, an apparatus is provided for electroplating that comprises a cell, a substrate holder, and an actuator. The actuator can displace the substrate holder assembly in the x and z directions and also tilt the substrate. In another aspect, a method is provided of driving a meniscus formed by electrolyte solution across a surface of a substrate. The method comprises enhancing the interaction between the electrolyte solution meniscus and the surface as the substrate is immersed into the electrolyte solution.
Abstract:
Embodiments of the invention generally provide a method and apparatus for plating a metal on a substrate. The electrochemical plating system generally includes a plating cell having an anolyte compartment and a catholyte compartment, the anolyte compartment having an insoluble anode and an anolyte therein. The catholyte compartment generally includes a substrate support member and a catholyte therein. In addition, the plating cell generally includes an ion-exchange membrane disposed between the anolyte compartment and the catholyte compartment and a pump in fluid communication with the anolyte compartment, the pump configured to provide an anolyte to the anolyte compartment having a linear velocity of between about 0.5 cm/sec to about 50 cm/sec. The method generally includes supplying an anolyte solution to an anolyte compartment disposed in a plating cell having an anolyte compartment and a catholyte compartment. The anolyte solution generally passes through the anolyte compartment at a linear velocity of between about 0.5 cm/sec to about 50 cm/sec. The method further includes plating a metal onto the substrate with a catholyte solution disposed in a catholyte compartment of the plating cell, the catholyte compartment and the anolyte compartment separated by an ion-exchange membrane, removing used anolyte solution from the plating cell and passing at least a portion of the used anolyte solution through a correction device including at least one of copper oxide, copper hydroxide and combinations thereof.
Abstract:
One aspect of the invention provides a consistent metal electroplating technique to form void-less metal interconnects in sub-micron high aspect ratio features on semiconductor substrates. One embodiment of the invention provides a method for filling sub-micron features (214) on a substrate, comprising reactive precleaning the substrate, depositing a barrier layer (218) on the substrate using high density plasma physical vapor deposition; depositing a seed layer (220) over the barrier layer using high density plasma physical vapor deposition; and electro-chemically depositing a metal (222) using a highly resistive electrolyte and applying a first current density during a first deposition period followed by a second current density during a second period.
Abstract:
A method and associated apparatus for electro-chemically depositing a metal film on a substrate having a metal seed layer. The apparatus comprises a substrate holder that holds the substrate. The electrolyte cell receives the substrate in a processing position. The actuator is connected to the substrate holder and adjustably positions the substrate relative to the electrolyte cell. The method involves electro-chemically depositing a metal film on a substrate having a metal seed layer comprising disposing the substrate in an electrolyte cell that is configured to receive the substrate. The method comprises adjustably positioning the substrate relative to the electrolyte cell.
Abstract:
Methods and apparatus for forming a conformal conductive layer on a substrate for an electroplating process are provided. In one aspect, a method is provided for processing a substrate including depositing a conductive barrier layer on the substrate, and then depositing a nucleation layer on the conductive barrier layer. The nucleation layer is deposited by depositing a first conductive material on the substrate and then depositing a second conductive material on the first conductive material by an electroless deposition process. The second conductive material may comprise nickel, tin, or combinations thereof. The substrate may then be further processed by electroplating a third conductive material on the second conductive material and/or annealing the substrate.
Abstract:
An apparatus comprising an electrolyte cell, an anode, and a porous rigid diffuser. The electrolyte cell is configured to receive a substrate to have a metal film deposited thereon. An anode is contained within the electrolyte cell. A porous rigid diffuser is connected to the electrolyte cell and extends across the electrolyte cell. The diffuser is positioned between a location that the substrate is to be positioned when the metal film is deposited thereon and the anode.
Abstract:
Embodiments of the invention may generally provide a small volume electrochemical plating cell. The plating cell generally includes a fluid basin configured to contain a plating solution therein, the fluid basin having a substantially horizontal weir. The cell further includes an anode positioned in a lower portion of the fluid basin, the anode having a plurality of parallel channels formed therethrough, and a base member configured to receive the anode, the base member having a plurality of groves formed into an anode receiving surface, each of the plurality of grooves terminating into an annular drain channel. A membrane support assembly configured to position a membrane immediately above the anode in a substantially planar orientation with respect to the anode surface is provided, the membrane support assembly having a plurality of channels and bores formed therein.
Abstract:
A method and apparatus for immersing a substrate for plating operations. The apparatus generally includes a plating cell configured containing a plating solution therein. The plating cell includes at least one fluid basin, a diffusion plate position in a lower portion of the at least one fluid basin, and an anode positioned below the diffusion plate, the anode and the diffusion plate being positioned in parallel orientation with each other and in a tilted orientation with respect to horizontal. The apparatus further includes a head assembly positioned proximate the plating cell, the head assembly including a base member, an actuator positioned at a distal end of the base member, and a substrate support assembly in mechanical communication with the actuator, the substrate support assembly being configured to support a substrate in the at least one fluid basin for processing in an orientation that is generally parallel to the diffusion plate.
Abstract:
An electro-chemical plating system is described. A method is performed by the electro-chemical plating system in which a seed layer formed on a substrate is immersed into an electrolyte solution. In one aspect, a substrate is immersed in the electrochemical plating system by tilting the substrate as it enters the electrolyte solution to limit the trapping or formation of air bubbles in the electrolyte solution between the substrate and the substrate holder. In another aspect, an apparatus is provided for electroplating that comprises a cell, a substrate holder, and an actuator. The actuator can displace the substrate holder assembly in the x and z directions and also tilt the substrate. In another aspect, a method is provided of driving a meniscus formed by electrolyte solution across a surface of a substrate. The method comprises enhancing the interaction between the electrolyte solution meniscus and the surface as the substrate is immersed into the electrolyte solution.