Abstract:
An EUV source for generating a beam of EUV radiation, has a droplet generator with a nozzle assembly to emit droplets of fuel from a nozzle towards a plasma formation location. The nozzle assembly receives the fuel from a reservoir. The nozzle assembly has a pump chamber receiving the fuel from the reservoir and an actuator to vibrate a membrane that forms a wall of the pump chamber. The wall is oriented perpendicularly to a direction wherein the nozzle emits the fuel. The nozzle assembly has first and second nozzle filters non-adjacently arranged in series in a path of the fuel from the pump chamber to the nozzle.
Abstract:
A fuel emitter, comprising a first droplet stream generator and a droplet removal apparatus. The first droplet stream generator is arranged to emit a fuel stream comprising droplets separated by a first distance. The droplet removal apparatus is arranged to remove a first subset of droplets from the fuel stream before the first subset of droplets reach a target region such that the droplets of the fuel stream provided to the target region are separated a second distance greater than the first distance.
Abstract:
A supply system for an extreme ultraviolet (EUV) light source includes an apparatus configured to be fluidly coupled to a reservoir configured to contain target material that produces EUV light in a plasma state, the apparatus including two or more target formation units, each one of the target formation units including: a nozzle structure configured to receive the target material from the reservoir, the nozzle structure including an orifice configured to emit the target material to a plasma formation location. The supply system further includes a control system configured to select a particular one of the target formation units for emitting the target material to the plasma formation location. An apparatus for a supply system of an extreme ultraviolet (EUV) light source includes a MEMS system fabricated in a semiconductor device fabrication technology, and the MEMS system including a nozzle structure configured to be fluidly coupled to a reservoir.
Abstract:
Droplet generators, such as used in an EUV radiation source, and associated EUV radiation sources and lithographic apparatuses. A droplet generator can include a nozzle assembly to emit the fuel as droplets, the nozzle assembly being within a pressurized environment at substantially the same pressure as the fuel pressure within the droplet generator. A droplet generator can include an actuator in contact with and biased against a pump chamber by means of a biasing mechanism having an actuator support biased against the actuator. The actuator acts on the fuel within the pump chamber to create droplets. The actuator support has a material with a greater coefficient of thermal expansion than its surrounding structure, such that it is moveable within the surrounding structure at ambient temperature, but expands against the surrounding structure at an operating temperature, so as to clamp the actuator support against the surrounding structure at the operating temperature.