Abstract:
Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device. In some embodiments, the blood coagulation testing system can operate as an automated thromboelastometry system that is particularly useful, for example, at a point-of-care site.
Abstract:
Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device, in some embodiments, the blood coagulation testing system can operate as an automated thrornboelastometry system that is particularly useful, for example, at a point-of-care site.
Abstract:
Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device, in some embodiments, the blood coagulation testing system can operate as an automated thrornboelastometry system that is particularly useful, for example, at a point-of-care site.
Abstract:
Some embodiments of a blood coagulation testing system include an analyzer console device and a single-use cartridge component configured to releasably install into the console device, in some embodiments, the blood coagulation testing system can operate as an automated thromboelastometry system that is particularly useful, for example, at a point-of-care site.
Abstract:
A platelet impedance measurement system including an electrode assembly allows for measurement of platelet function in blood. The assembly includes a substrate that acts as a substantially rigid base and includes an electrode. A portion of the electrode is exposed such that, when the electrode is placed in blood, the exposed portion is in contact with the blood for measuring impedance changes as platelets adhere to the electrode. Wires of the electrode can be attached to each end of the substrate and can run within a groove along a portion of the substrate. The substrate includes an open area where the wires in the groove exit and re¬ enter the substrate at the end of the substrate, allowing the wires to be exposed to the blood. The open area includes a brace, ensuring that the exposed wires are held in the appropriate placement relative to each other and to the cuvette.
Abstract:
Embodiments of a platelet testing system include an analyzer console device and a blood testing cartridge configured to releasably install into the console device. The cartridge device is configured with one or more measuring chambers and one or more mixing chambers that are fluidically connected within the cartridge device that enable the mixing of saline and a blood sample to a desired dilution. Additionally, the cartridge device is further configured with a cartridge slider that provides a reagent bead to the saline and blood mixture at a desired time. As such, one or more platelet activation assays can be conducted by measuring, through cartridge electrodes of the cartridge device, the detectable changes in platelet activity within the blood and saline mixture.
Abstract:
This disclosure provides apparatus, methods and systems for error correction in multi processor systems. Some implementations include a plurality of computing modules, each computing module including a processor. Each processor may include processing state. In some other implementations, each computing module may also include a memory. Upon receiving a signal to perform a partial re-synchronization, a hash of each processor's state data may be performed. In some embodiments, a hash of at least a portion of each computing module's memory data may also be performed. The hashes for each processor are then compared to determine majority hashes and possible minority hashes. Upon identifying a minority hash, the computing module that produced the minority hash may receive new processing state data from one of the computing modules that produced a majority hash.
Abstract:
Embodiments of a blood coagulation testing system can operate as an automated thromboelastometry system that is particularly useful, for example, at a point-of-care site. In some embodiments, the blood coagulation testing system includes a single-use cartridge component configured to measure and mix reagents with blood received from a blood sample reservoir. A mixing chamber in the single-use cartridge includes different reagent beads that, when exposed to a pre-determined volume of blood, dissolve and mix specific reagents with the blood. The assembled blood cartridge further includes configurations that are designed to prevent blood from prematurely mixing with reagent beads in the mixing chamber and to guide blood flow in the mixing chamber to dissolve reagent beads in a desired order. Thus, the mixture obtained from the mixing chamber can be readily utilized to generate results for the blood coagulation testing system.