摘要:
Provided herein are three-dimensional ion transport networks and current collectors for electrodes of electrochemical cells. Exemplary electrodes include interconnected layers and channels including an electrolyte to facilitate ion transport. Exemplary electrodes also include three dimensional current collectors, such as current collectors having electronically conducting rods, electronically conducting layers or a combination thereof.
摘要:
Ionically conducting composite membranes are provided which include a solid-state ionically conducting material The ionically conducting composite membranes may be used in electrochemical cells. The solid-state ionically conducting material may be an electrochemically active material. In some electrochemical cells, the solid-state ionically conducting material may be in electronic communication with an external tab.
摘要:
Disclosed are electrochemical cells including a composite separator capable of changing the performance of the cell by a) changing the internal electric field of the cell, b) activating lost active material, c) providing an auxiliary current collector for an electrode and/or d) limiting or preventing hot spots and/or thermal runaway upon formation of an electronic short in the system. An exemplary composite separator includes at least one electronically conducting layer and at least one electronically insulating layer. Another exemplary composite separator includes an electronically conducting layer and a solid ionic conductor. Also disclosed are methods for detecting and managing the onset of a short in an electrochemical cell and for charging an electrochemical cell.
摘要:
A three-dimensional electrode array for use in electrochemical cells, fuel cells, capacitors, supercapacitors, flow batteries, metal-air batteries and semi-solid batteries.
摘要:
A system and method for monitoring characteristics of an electric energy device includes generating an external short from the electric energy device. The external short occurs at a known distance from a sensor and has at least one known external resistance. The received signal representing change in electromagnetic field due to the applied external short may be analyzed to determine a signal parameter that is then analyzed in comparison to a lookup table, based on the known conditions including distance, temperature and the external resistance. The output of this analyses in comparison with expected values may be utilized to identify a characteristic of the energy device.
摘要:
A plurality of battery packs is provided in communication with an energy monitoring and control system. Each battery pack includes a plurality of battery cells that collectively dictate the capabilities of the battery pack. The energy monitoring and control system determines a plurality of pack charging or pack discharging parameters for each battery pack that, when performed, achieve one or more performance metrics at a user level (e.g., performance metrics of each battery pack within a system of multiple battery packs). The battery pack further determines a plurality of cell charging or cell discharging parameters for each battery cell based upon the determined plurality of pack charging or pack discharging parameters for each battery cell that, when performed, achieve one or more performance metrics at a battery level (e.g., performance metrics of different cells of each battery pack).
摘要:
Provided are separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a variety of applications including electrochemical storage and conversion. Embodiments provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation and for improving the cycle life and rate capability of electrochemical cells including silicon anode based batteries, air cathode based batteries, redox flow batteries, solid electrolyte based systems, fuel cells, flow batteries and semisolid batteries. Disclosed separators include multilayer, porous geometries supporting excellent ion transport properties, providing a barrier to prevent dendrite initiated mechanical failure, shorting or thermal runaway, or providing improved electrode conductivity and improved electric field uniformity. Disclosed separators include composite solid electrolytes with supporting mesh or fiber systems providing solid electrolyte hardness and safety with supporting mesh or fiber toughness and long life required for thin solid electrolytes without fabrication pinholes or operationally created cracks.
摘要:
The disclosure provides electrochemical cells including a separator enclosure which encloses at least a portion of a positive or negative electrode. In an embodiment, the separator generates a contact force or pressure on at least a portion of the electrode which can improve the performance of the cell. The disclosure also provides methods for charging an electrochemical cell.
摘要:
A method for abnormality detection in an energy unit includes passively detecting an abnormality in an energy unit by detecting electromagnetic radiation generated by the abnormality, the energy unit comprising at least one of an electrical energy unit and an electrochemical energy unit. A method for detecting an abnormality in an energy unit includes (a) applying a signal to the energy unit, (b) performing a plurality of measurements, at a respective plurality of different locations within the energy unit, of a response of the energy unit to the signal, and (c) processing the plurality of measurements to identify the abnormality.
摘要:
In an aspect, the invention provides separator systems for electrochemical systems providing electronic, mechanical and chemical properties useful for a range of electrochemical storage and conversion applications. Separator systems of some embodiments, for example, provide structural, physical and electrostatic attributes useful for managing and controlling dendrite formation in lithium and zinc based batteries. In an embodiment, for example, separator systems of the invention have a multilayer, porous geometry supporting excellent ion transport properties while at the same time providing a barrier effective to prevent dendrite initiated mechanical failure, shorting and/or thermal runaway.