Abstract:
A selected boiling range fluid catalytically cracked naphtha stream is subjected to simultaneous splitting, thioetherification of a light boiling range naphtha and selective hydrogenation of the dienes in a medium boiling range naphtha.
Abstract:
A process for the production of tertiary ethers, including: feeding a hydrocarbon stream comprising isoolefins and propionitrile to a distillation column reactor system containing at least one etherification reaction zone; feeding a C2 to C6 monoalcohol or mixture thereof to the distillation column reactor; concurrently in the distillation column reactor system: reacting a portion of the isoolefins with a portion of the alcohols to form a tertiary ether; and separating the tertiary ether from unreacted isoolefins; withdrawing the tertiary ether and propionitrile from the distillation column reactor system as a bottoms; withdrawing the unreacted isoolefins from the distillation column reactor system as an overheads; and operating the distillation column reactor system such that the etherification reaction zone is substantially free of propionitrile.
Abstract:
A process for the isomerization of heptane preferably contained within a naphtha stream is disclosed wherein the naphtha is stripped of the butanes and the pentanes and hexanes are removed for isomerization. The heptanes and heavier are fed to a distillation column reactor containing an isomerization catalyst where the normal heptane is isomerized to mono and di branched heptane and removed as overheads. The cyclic heptanes and heavier are removed as bottoms and for feed to a catalytic reforming process.
Abstract:
A process for removal of acetylenic compounds from hydrocarbon streams in which a hydrocarbon feed having a target fraction which contains a first concentration of acetylenic compounds and olefins is contacted with a catalyst selective for the hydrogenation of acetylenic compounds in the presence of hydrogen and a solvent having a boiling point higher than the boiling of the target fraction in a distillation reaction zone under conditions of temperature, pressure and hydrogen concentration favoring the hydrogenation of acetylenic compounds in which the target fraction is recovered as overheads having a second concentration of acetylenic compounds lower than said first concentration and the solvent is recovered as bottoms.
Abstract:
A process for the removal of oxygenated sulfur compounds from a hydrocarbon stream, especially the effluent from a sulfuric acid alkylation reactor, in which the hydrocarbon stream is first subjected to deentrainment of any carryover liquid sulfuric acid and then passed over a sorbent which removes the oxygenated sulfur compounds.
Abstract:
A process for the isomerization of normal heptane contained within a naphtha stream, such as a C 6 -C 8 naphtha, in which the naphtha stream is fractionated into a fraction substantially free of normal heptane and a fraction containing normal heptane. The fraction containing normal heptane is contacted with an isomerization catalyst in an isomerization zone operated as a singe pass fixed bed reactor having a single effluent to isomerize a portion of said normal heptane to branched heptane. The effluent is recovered from said isomerization zone and the effluent is fractionated to recover said branched heptane. The unconverted normal heptane is recovered and returned to the isomerization since it can be separated from the branded heptanes by fractionation.
Abstract:
An energy efficient process scheme for a highly exothermic reactiondistillation system in which the reactor is external to the distillation column and the feed to the reactor comprises a mixture of at least one liquid product stream from the distillation column with or without other liquid/vapor reactants. The reactor is operated under adiabatic and boiling point conditions and at a pressure that results in vaporizing a portion of the liquid flow through the reactor due to the heat of reaction. Under these conditions, reaction temperature is controlled by reactor pressure. The pressure (and hence the temperature) is maintained at a sufficiently high level such that the reactor effluent can be efficiently used to provide reboil heat for the distillation column.
Abstract:
A process for the reduction of naphthalene in process streams containing alkylaromatic solvents. Naphthalene is contacted with alkylbenzenes in a distillation column reactor (10) in the presence of transalkylation catalyst (12) to produce alkylnaphthalenes which are concurrently separated by fractional distillation as bottoms (102) and the alkylbenzenes are separated as overheads (101).