Abstract:
The present invention relates generally to a wavelength conversion device (10) and a laser projection system (100) incorporating the same. According to one embodiment of the present invention, the wavelength conversion device is provided to a laser projection system (100). The wavelength conversion device (10) comprises an axial waveguide portion (12A) and a pair of lateral planar waveguide portions (12B) confined between a pair of relatively low index cladding layers (14). The effective index of refraction in the axial waveguide portion (12A) of the waveguide region and the effective index of refraction in the lateral planar waveguide portions (12B) of the waveguide region (12) are established such that the relatively low intensity laterally distributed parasitic light (17) is associated with a scattering angle ? that is at least as large as the beam divergence angle of the relatively high intensity light (15) propagating in the axial waveguide portion (12A).
Abstract:
A microstructured optical fiber (30) is described. The microstructured optical fiber (30) comprises an inner region (32) and an outer region (34). The inner region (32) includes an inner material (36) and a plurality of holes formed in the inner material (36). The outer region (34) surrounds the inner region (32), and includes an outer material (42). The softening point temperature of the inner material (36) is greater than the softening point temperature of the outer material (42) by at least about 50 °C. Microstructured optical fiber preforms and methods for making the microstructured optical fibers are also described. The microstructured optical fiber may be made to have substantially undistorted holes in the inner region.
Abstract:
Disclosed is a photonic band-gap crystal waveguide having the physical dimension of the photonic crystal lattice and the size of the defect (12, 20) selected to provide for optimum mode power confinement to the defect. The defect (12, 20) has a boundary which has a characteristic numerical value associated with it. The ratio of this numerical value to the pitch (4) of the photonic crystal is selected to avoid surface modes found to exist in certain configurations of the photonic band-gap crystal waveguide. Embodiments in accord with the invention having circular and hexagonal defect cross sections are disclosed and described. A method of making the photonic band-gap crystal waveguide is also disclosed and described.
Abstract:
An isotopically-altered, silica based optical fiber is provided having lower losses, broader bandwidth, and broader Raman gain spectrum characteristics than conventional silica-based fiber. A heavier, less naturally abundant isotope of silicon or oxygen is substituted for a lighter, more naturally abundant isotope to shift the infrared absorption to a slightly longer wavelength. In one embodiment, oxygen-18 is substituted for the much more naturally abundant oxygen-16 at least in the core region of the fiber. The resulting isotopically-altered fiber has a minimum loss of 0.044 dB/km less than conventional fiber, and a bandwidth that is 17 percent broader for a loss range between 0.044-0.034 dB/km. The fiber may be easily manufactured with conventional fiber manufacturing equipment by way of a plasma chemical vapor deposition technique. When a 50 percent substitution of oxygen-18 for oxygen-16 is made in the core region of the fiber, the Raman gain spectrum is substantially broadened.
Abstract translation:提供了一种同位素改性的二氧化硅基光纤,其比传统的二氧化硅基光纤具有更低的损耗,更宽的带宽和更广泛的拉曼增益光谱特性。 更重,较不自然丰富的硅或氧的同位素代替较轻的,更自然的丰富的同位素,以将红外吸收转移到稍长的波长。 在一个实施方案中,氧-18至少在纤维的核心区域中替代天然丰富的氧-16。 所得到的同位素改变的光纤比常规光纤的损耗最小为0.044 dB / km,对于0.044-0.034 dB / km之间的损耗范围,宽带宽为17%。 纤维可以通过等离子体化学气相沉积技术容易地用传统的纤维制造设备制造。 当在纤维的纤芯区域中进行氧-16取代氧-16的50%时,拉曼增益谱显着扩大。
Abstract:
A fiber optic waveguide (30) is disclosed. The fiber optic waveguide includes a core region (34), and a cladding region surrounding the core region. The cladding region includes an inner cladding region (32) and an outer cladding region (38). The inner cladding region has a lattice of large diameter columns (36). The lattice of large diameter columns have a diameter (d) to pitch ( LAMBDA ) ratio defined by the relationship d/ LAMBDA greater than or equal to 0.3.
Abstract:
An optical waveguide environmental sensor is provided that is capable of detecting a target gas or liquid in the ambient environment in an advantageously short period of time. The waveguide is preferably in the form of an optical fiber having a cladding that contains a photonic band gap structure which in turn envelopes a light conducting, hollow core portion. The cladding further includes at least one elongated side opening that preferably extends the entire length of the fiber and exposes said hollow core portion to the ambient environment, which provides broad and nearly immediate access of the core portion to gases and liquids in the ambient environment, thereby minimizing sensor response time. The ambient gases or liquids filling the hollow core portion and elongated opening function as a ridge and slab, respectively, of an optical ridge waveguide that effectively supports at least one bound optical mode.
Abstract:
A plurality of active gain material (93) is disposed in an active interface portion (44) of a dielectric band-gap cladding confinement region (22) adjacent to a dielectric core (12) of a photonic band-gap crystal fiber (20), wherein during operation, the plurality of active gain material (93) absorbs the pump energy and stores the pump energy as a potential energy storage for stimulation by EM energy in a second guided mode at a second frequency in a second range of frequencies for overlapping with the first guided mode of the core (12) such that the surface defined by an interface between the photonic band-gap cladding (22) and the dielectric core (12) that supports at least one surface mode propagating at that interface (44) overlaps the active interface portion of the dielectric cladding confinement region and a state associated with the dielectric core (12).
Abstract:
A fiber optic waveguide is disclosed. The fiber optic waveguide includes a core region (44), and a moat region (50) surrounding the core region (44). A cladding region (42) surrounds the moat region (50) and the core region (44). The cladding region (42) includes a lattice (56) of column structures disposed within a solid background matrix (48). The diameter of the core region (44) is sized for making contact with the moat region (50) for creating an extended core region (54) at longer wavelengths. The core region (44), the moat region (50), and the cladding region (42) function to produce unique dispersion compensating properties, which include negative dispersion and positive dispersion. The core region (44) may be formed from a high index material and the moat region (50) may be formed from a material having a refractive index lower than the refractive index of the core region (44). The cladding region (42) is formed from a material having a refractive index which is higher than the index of the moat region (50) and lower than the refractive index of core region (44).