Abstract:
An exhaust aftertreatment system includes a selective catalytic reduction (SCR) catalyst is disposed in an exhaust gas system of an internal combustion engine. A reductant injector is coupled to the exhaust gas stream at a position upstream of the SCR catalyst. A controller is configured to determine an NH3 slip condition and control operation of the exhaust aftertreatment system in response to the NH3 slip condition to improve deNOx efficiency and reduce NH3 slip.
Abstract:
A method includes determining whether selective catalytic reduction (SCR) test conditions are present, and in response to the SCR test conditions being present, operating an SCR aftertreatment system at a number of reduced ammonia to NOx ratio (ANR) operating points. The method further includes determining a deNO x efficiency value corresponding to each of the ANR operating points. The method further includes determining a reductant correction value in response to the deNO x efficiency values corresponding to each of the ANR operating points, and providing a reductant injection command in response to the reductant correction value.
Abstract:
A method, system, and apparatus relating to operating an internal combustion engine include steps or features for determining a performance threshold of a particulate filter disposed in an exhaust gas flow of the engine having a set time interval between regeneration events of the particulate filter; determining a rate at which the particulate filter is reaching the performance threshold; and controlling an exhaust gas characteristic to control the rate so that the performance threshold is reached at or just before an end of the time interval. In an embodiment, there are steps or features for interpreting a filter condition of the particulate filter; determining a particulate matter load rate of the filter as a function of the condition; determining a limit of an exhaust gas characteristic based on the load rate; and controlling engine operation to control the exhaust gas characteristic to satisfy the limit.
Abstract:
A computing system is structured to receive operating data provided by a telematics circuit associated with a remote engine. The operating data comprises information provided by at least one sensor and/or at least one actuation command. The computing system is structured to determine, based on the operating data, a plurality of field-replaceable units (FRUs) associated with the operating data. The computing system is structured to generate a computer-based simulation corresponding to at least one degradation level for an FRU from the plurality of FRUs, identify a most probable failure, and rank the computer-based simulations across the plurality of FRUs. The computing system is structured to generate an electronic notification comprising data associated with the most probable failure and transmit the electronic notification to a computing device.
Abstract:
An apparatus includes an exhaust analysis circuit and a sensor diagnostics circuit. The exhaust analysis circuit is structured to interpret first oxygen data acquired by a first sensor indicative of a first amount of oxygen in an exhaust flow at a first location along an exhaust aftertreatment system, and interpret second oxygen data acquired by a second sensor indicative of a second amount of oxygen in the exhaust flow at a second location along the exhaust aftertreatment system. The sensor diagnostic circuit is structured to determine at least one of the first sensor and the second sensor are faulty based on the first amount of oxygen and the second amount of oxygen differing more than a threshold value.
Abstract:
A selective catalytic reduction (SCR) catalyst is disposed in an exhaust gas system of an internal combustion engine. A reductant injector is coupled to the exhaust gas stream at a position upstream of the SCR catalyst, and first and second NOx sensors provide NOx measurements upstream of and downstream of the SCR catalyst, respectively. A system and method is disclosed for operating the system to determine a NOx amount and/or a NH3 slip amount downstream of the SCR catalyst by decoupling NOx-NH3 measurements from the output of the second NOx sensor to provide control of the reductant injection amount.
Abstract:
A method includes providing: a selective catalytic reduction (SCR) catalyst disposed in an exhaust gas stream of an internal combustion engine, a reagent injector operationally coupled to the exhaust gas stream at a position upstream of the SCR catalyst, and a NO x sensor coupled to the exhaust gas stream at a position downstream of at least a first portion of the SCR catalyst. The method includes operating an extremum seeking controller to determine a first reagent injection amount corresponding to a predetermined slope of δNO x /δANR, the δNO x /δANR determined according to the NO x sensor, providing a reagent injection command in response to the first reagent injection amount, and injecting an amount of the reagent in response to the reagent injection command.
Abstract:
A method, system, and apparatus relating to operating an internal combustion engine include steps or features for determining a performance threshold of a particulate filter disposed in an exhaust gas flow of the engine having a set time interval between regeneration events of the particulate filter; determining a rate at which the particulate filter is reaching the performance threshold; and controlling an exhaust gas characteristic to control the rate so that the performance threshold is reached at or just before an end of the time interval. In an embodiment, there are steps or features for interpreting a filter condition of the particulate filter; determining a particulate matter load rate of the filter as a function of the condition; determining a limit of an exhaust gas characteristic based on the load rate; and controlling engine operation to control the exhaust gas characteristic to satisfy the limit.
Abstract:
An exhaust aftertreatment device includes a housing defining an inlet and an outlet. A plurality of first substrate layers are positioned within the housing in fluid receiving communication with the inlet. The plurality of first substrate layers define a first flow direction, and the plurality of first substrate layers comprise a passive NOx adsorber washcoat. A plurality of second substrate layers are positioned within the housing with the first and second substrate layers being layered in alternating order. The plurality of second substrate layers define a second flow direction perpendicular to the first flow direction, and the plurality of second substrate layers comprise a selective catalytic reduction washcoat. A connecting passage is in fluid receiving communication with the plurality of first substrate layers and in fluid providing communication with the plurality of second substrate layers.
Abstract:
An apparatus includes a pump, a delivery mechanism in fluid communication with the pump, and a controller communicatively coupled to the pump and the delivery mechanism. The controller is structured to interpret, via a pump diagnostic circuit, first and second pump parameters indicative of first and second pump rates, interpret, via a dosing diagnostic circuit, first and second dosing parameters indicative of at least one of (i) first and second reductant flows or (ii) first and second injector characteristics, determine, via a delivery diagnostic circuit, a delivery status based, at least in part, on the interpretation of the first and second pump parameters and the first and second dosing parameters, and generate, via the delivery diagnostic circuit, a status command indicative at least one of an under-restricted delivery mechanism or an over-restricted delivery mechanism in response to the determination of the delivery status.