Abstract:
Disclosed is a polymeric composition containing at least 95 wt. % of a polypropylene copolymer; and 50 ppm to 2000 ppm of an aryl amide containing clarifying agent or a phosphate ester salt containing clarifying agent or a combination thereof, wherein the polymeric composition has a haze value of A after being extruded once and a haze value of B after being extruded 5 times, wherein the ratio of A to B is 1 to 1.35 and A is less than 25 %, and wherein A and B are determined in accordance with ASTMD1003, at a thickness of about 40 mil, methods of making the polymeric composition and articles containing the polymeric composition.
Abstract:
Disclosed is an injection stretch blow molded (ISBM) container containing a surface having a static coefficient of friction (COF) of 0.15 to 0.21, a dynamic COF of 0.06 to 0.1, wherein the surface retains a water contact angle of 76° or higher for up to three minutes after wetting of the surface with a water drop of 14 to 16 mm diameter and the container is made with a polymeric composition containing a high density polyethylene (HDPE) having a dispersity (Mw/Mn) of 9 or higher as measured by GPC; a MI2 of 1 g/10 min or higher as measured by ASTM D-1238; 190° C./2.16 kg, as measured by ASTM D-1238; and an environmental stress crack resistance (ESCR) at 100% Igepal of > 150 hours as measured by ASTM D-1693, B.
Abstract:
A process forming a high MFR polypropylene includes providing a reactor powder polypropylene, the reactor powder polypropylene having a melt flow rate of less than 100 dg/min. The process also includes mixing the reactor powder polypropylene with a free- radical initiator to form a powder/initiator mixture and subjecting the powder/initiator mixture to post-reactor forming. The present disclosure further provides for a vis-broken polypropylene and a polymer article.
Abstract:
Thin polymer sheets and used thereof are described. A polymer sheet can include greater than 90 wt.% of a single-site catalyzed polyolefin (PO) and have a thickness of at least 0.0254 cm. The sheet can be used to produce molded articles.
Abstract:
A process forming a high MFR polypropylene includes providing a reactor powder polypropylene, the reactor powder polypropylene having a melt flow rate of less than 100 dg/min. The process also includes mixing the reactor powder polypropylene with a free- radical initiator to form a powder/initiator mixture and subjecting the powder/initiator mixture to post-reactor forming. The present disclosure further provides for a vis-broken polypropylene and a polymer article.
Abstract:
A method of forming a thermoformed article may include melt extruding polyethylene to form an extruded sheet. The rheological breadth parameter of the polyethylene may change by no more than about 5% after extrusion relative to the rheological breadth parameter of the polyethylene prior to extrusion. The extruded sheet may be thermoformed within a mold to form the thermoformed article. During thermoforming, the extruded sheet may be subjected to solid- state stretching in one or more directions. The thermoformed article may be retrieved from the mold. The polyethylene may have a rheological breadth parameter of from 0.20 to 0.40, a multimodal molecular weight distribution, a polydispersity (Mw/Mn) of from 5 to 18, a density ranging from 0.940 to 0.970 g/cc, may exhibit tensile strain-hardening, or combinations thereof.