Abstract:
A probe card assembly includes an insert holder configured to hold a probe insert, which can include probes disposed in a particular configuration for probing a device to be tested. The probe card assembly provides an electrical interface to a tester that can control testing of the device, and while attached to the probe card assembly, the insert holder can hold the probe insert such that the probe insert is electrically connected to electrical paths within the probe card assembly that are part of the interface to the tester. The insert holder is detachable from the probe card assembly.
Abstract:
probing apparatus can comprise a substrate, conductive signal traces, probes, and electromagnetic shielding. The substrate can have a first surface and a second surface opposite the first surface, and the electrically conductive first signal traces can be disposed on the first surface of the first substrate. The probes can be attached to the first signal traces, and the electromagnetic shielding structures can be disposed about the signal traces.
Abstract:
Double-sided interposer assemblies and methods for forming and using them. In one example of the invention, an interposer (1078) comprises a substrate having a first surface (1082) and a second surface (1086) opposite of said first surface, a first plurality of contact elements (1080) disposed on said first side (1082) of said substrate, and a second plurality of contact elements (1084) disposed on said second surface (1086) of said substrate, wherein said interposer (1078) connects electronic devices (1088, 1090) via said first and said second plurality of contact elements.
Abstract:
Methods are provide for making vertical feed through electrical connections structure in a substrate or tile. The vertical feed through (Fig. 2, 10) can be configured to make plated through holes usable for inserting and attaching connector probes ( Fig. 2, 12). Probes may be attached to the plated through holes or attachment wells to create resilient spring contacts to form a wafer probe card assembly. A twisted tube plated through hole structure (Fig. 9D, 74) is formed by supporting twisted sacrificial wire coated with the plating material in a substrate (Fig. 9D, 79), and later etching away the wires (Fig. 9A, 74).
Abstract:
Methods and apparatus for testing semiconductor devices are provided herein. In some embodiments, an assembly for testing semiconductor devices can include a probe card assembly; and a thermal barrier disposed proximate an upper surface of the probe card assembly, the thermal barrier can restrict thermal transfer between tester side boundary conditions and portions of the probe card assembly disposed beneath the thermal barrier.
Abstract:
Methods and apparatuses for testing semiconductor devices are disclosed. Over travel stops limit over travel of a device to be tested with respect to probes of a probe card assembly. Feedback control techniques are employed to control relative movement of the device and the probe card assembly. A probe card assembly includes flexible base for absorbing excessive over travel of the device to be tested with respect to the probe card assembly.
Abstract:
A interconnect structure is inexpensively manufactured and easily insertable into a socket. The interconnect structure is manufactured by forming a sacrificial substrate with cavities that is covered by a masking material having openings corresponding to the cavities. A first plating process is performed by depositing conductive material, followed by coupling wires within the openings and performing another plating process by depositing more conductive material. The interconnect structure is completed by first removing the masking material and sacrificial substrate. Ends of the wires are coupled opposite now-formed contact structures to a board. To complete the socket, a support device is coupled to the board to hold a tested integrated circuit.