Abstract:
The present disclosure relates to semiconductor device manufacturing, and particularly to selective metal wet etching compositions and processes for selectively etching certain metals relative to adjacent structures and materials with those etching compositions. More particularly, the present disclosure relates to aqueous metal passivation and etching compositions, as well as to processes of using these compositions in the presence of nickel platinum silicides. This disclosure further relates to a passivation composition containing at least one sulfonic acid, at least one compound containing a nitrate or nitrosyl ion, and water, wherein the passivation composition is substantially free of a halide ion.
Abstract:
The disclosure provides methods and compositions therefor for treating a surface wherein a surface treatment layer is formed on the surface, thereby minimizing or preventing pattern collapse as the surface is subjected to typical cleaning steps in the semiconductor manufacturing process.
Abstract:
This disclosure relates to methods and compositions for treating a semiconductor substrate having a pattern disposed on a surface of the substrate.
Abstract:
This disclosure relates to compositions containing 1) at least one water soluble polar aprotic organic solvent; 2) at least one quaternary ammonium hydroxide; 3) at least one compound comprising at least three hydroxyl groups; 4) at least one carboxylic acid; 5) at least one Group II metal cation; 6) at least one copper corrosion inhibitor selected from the group consisting of 6-substituted-2,4-diamino-1,3,5-triazines; and 7) water. The compositions can effectively strip positive or negative-tone resists or resist residues, and be non-corrosive to bumps and underlying metallization materials (such as SnAg, CuNiSn, CuCoCu, CoSn, Ni, Cu, Al, W, Sn, Co, and the like) on a semiconductor substrate.
Abstract:
This disclosure relates to etching compositions containing 1) at least one oxidizing agent; 2) at least one chelating agent; 3) at least one organic solvent; 4) at least one amine compound; and 5) water.
Abstract:
The present disclosure is directed to etching compositions that are useful for, e.g., selectively removing titanium nitride (TiN) from a semiconductor substrate without substantially forming a cobalt oxide hydroxide layer. The present disclosure is based on the unexpected discovery that certain etching compositions can selectively etch TiN without forming a CoOx hydroxide layer on a Co layer in the semiconductor device, thereby enabling a subsequent Co etch without delay.
Abstract:
This disclosure relates to photoresist stripping compositions containing 1) at least one water soluble polar aprotic organic solvent; 2) at least one alcohol solvent; 3) at least one quaternary ammonium hydroxide; 4) water; 5) at least one copper corrosion inhibitor selected from 6-substituted-2,4-diamino-1,3,5-triazines; and 6) optionally, at least one defoaming surfactant.
Abstract:
This disclosure relates to a cleaning composition that contains 1) at least one redox agent; 2) at least one first chelating agent, the first chelating agent being a polyaminopolycarboxylic acid; 3) at least one second chelating agent different from the first chelating agent, the second chelating agent containing at least two nitrogen-containing groups; 4) at least one metal corrosion inhibitor, the metal corrosion inhibitor being a substituted or unsubstituted benzotriazole; 5) at least one organic solvent selected from the group consisting of water soluble alcohols, water soluble ketones, water soluble esters, and water soluble ethers; 6) water; and 7) optionally, at least one pH adjusting agent, the pH adjusting agent being a base free of a metal ion. This disclosure also relates to a method of using the above composition for cleaning a semiconductor substrate.