Abstract:
Certain aspects of the present disclosure provide a semiconductor variable capacitor. The semiconductor variable capacitor generally includes a first noninsulative region disposed above a semiconductor region, and a second non-insulative region disposed adjacent to the semiconductor region. In certain aspects, the semiconductor variable capacitor also includes a first silicide layer disposed above the second non-insulative region, wherein the first silicide layer overlaps at least a portion of the semiconductor region. In certain aspects, a control region may be disposed adjacent to the semiconductor region such that a capacitance between the first noninsulative region and the second non-insulative region is configured to be adjusted by varying a control voltage applied to the control region.
Abstract:
Devices, structures, and methods thereof for providing a Schottky or Schottky-like contact as a source region and/or a drain region of a power transistor are disclosed. A power transistor structure comprises a substrate of a first dopant polarity, a drift region formed on or within the substrate, a body region formed on or within the drift region, a gate structure formed on or within the substrate, a source region adjacent to the gate structure, a drain region formed adjacent to the gate structure. At least one of the source region and the drain region is formed from a Schottky or Schottky-like contact substantially near a surface of the substrate, comprising a silicide layer and an interfacial dopant segregation layer. The Schottky or Schottky-like contact is formed by low-temperature annealing a dopant segregation implant in the source and/or drain region.
Abstract:
A method includes forming a first metal layer (505) on source/drain regions (502) of an n-type metal-oxide-semiconductor (NMOS) device (520) and on source/drain regions (506) of a p-type MOS (PMOS) device (530) by chemical vapor deposition (CVD) or non-energetic physical vapor deposition (PVD). The method further includes selectively performing a rapid thermal anneal (RTA) process on the first metal layer after forming the first metal layer.
Abstract:
A method of forming silicide contacts of transistors includes forming a first set of epitaxial source/drain regions of a first set of transistors; forming a sacrificial epitaxial layer on top of the first set of epitaxial source/drain regions; forming a second set of epitaxial source/drain regions of a second set of transistors; converting a top portion of the second set of epitaxial source/drain regions into a metal silicide and the sacrificial epitaxial layer into a sacrificial silicide layer in a silicidation process wherein the first set of epitaxial source/drain regions underneath the sacrificial epitaxial layer is not affected by the silicidation process; removing selectively the sacrificial silicide layer; and converting a top portion of the first set of epitaxial source/drain regions into another metal silicide.