Abstract:
A high-speed precision positioning apparatus has a stage (102) supported by a platen (104). The stage is driven by a plurality of drive motors (112a, 112b, 112c, 112d) that are co-planar with the stage and arranged symmetrically around the stage. The drive motors apply drive forces directly to the stage without any mechnical contact to the stage. The drive forces impart planar motion to the stage in at least three degrees of freedom of motion. In the remaining three degrees of freedom the motion is constrained by a plurality of fluid bearings (144a, 144b, 144c, 144d) that operate between the stage and the platen. The drive motors are configured as magnets, attached to the stage, moving in a gap formed in-between top and bottom stationary coils. Integral force cancellation is implemented by a force cancellation system that applies cancellation forces to the stage. The cancellation forces, which are co-planar with a center of gravity of the stage and any components that move with the stage, cancel forces generated by planar motion of the stage. Interferometric encoders are used as position detectors.
Abstract:
Method and subsystem are provided for generating a trajectory to be followed by a motor-driven stage when processing microstructures at a laser-processing site utilizing an estimated change in temperature of motors caused when the motors drive the stage according to a number of possible trajectories. The method includes receiving reference data which represent locations of microstructures to be processed at the site, determining a plurality of possible trajectories based on the data, and estimating a change of temperature of motors caused when the motors drive the stage based on each of the possible trajectories. The method also includes determining a substantially optimum trajectory from the possible trajectories wherein positioning accuracy of the stage is maximized by following the substantially optimum trajectory.
Abstract:
Method and subsystem are provided for determining a sequence in which microstructures are to be processed at a laser-processing site by taking into account microstructures located near travel limits of a motor-driven stage. The method includes receiving reference data which represent locations of microstructures to be processed at the site and coalescing adjacent groups of microstructures into clusters of microstructures including edge clusters which contain the microstructures located near the travel limits of the motor-driven stage which moves the microstructures relative to a laser beam at the site. The method also includes dividing a cluster fragment from each edge cluster. The cluster fragments contain the microstructures located near the travel limits. The method then includes sorting the clusters and cluster fragments to obtain data which represent a substantially optimum sequence in which the microstructures are to be processed to increase throughput at the site.
Abstract:
A high-speed method and system for precisely positioning a waist of a material-processing laser beam to dynamically compensate for local variations in height of microstructures located on a plurality of objects spaced apart within a laser-processing site are provided. In the preferred embodiment, the microstructures are a plurality of conductive lines formed on a plurality of memory dice of a semiconductor wafer. The system includes a focusing lens subsystem for focusing a laser beam along an optical axis substantially orthogonal to a plane, an x-y stage for moving the wafer in the plane, and a first air bearing sled for moving the focusing lens subsystem along the optical axis. The system also includes a first controller for controlling the x-y stage based on reference data which represents 3-D locations of microstrucutures to be processed within the site, a second controller, and a first voice coil coupled to the second controller for positioning the first air bearing sled along the optical axis also based on the reference data. The reference data is generated by the system which includes a modulator for reducing power of the material-processing laser beam to obtain a probe laser beam to measure height of the semiconductor wafer at a plurality of locations about the site to obtain reference height data. A computer computes a reference surface based on the reference height data. A trajectory planner generates trajectories for the wafer and the waist of the laser beam based on the reference surface. The x-y stage and the first air bearing sled controllably move the wafer and the focusing lens subsystem, respectively, to precisely position the waist of the laser beam so that the waist substantially coincides with the 3-D locations of the microstructures within the site. The system also includes a spot size lens subsystem for controlling size of the waist of the laser beam, a second air bearing sled for moving the spot size lens subsystem along the optical axis, a third controller for controlling the second air bearing sled, and a second voice coil coupled to the third controller for positioning the second air bearing sled along the optical axis.