Abstract:
The invention provides and apparatus and method for mass producing a plurality of fiber optic mechanical splice-on connector subunits. The apparatus utilizes a magazine detachably mounted on a frame and containing a plurality of slots. The slots contain a plurality of subunits, each of which includes a ferrule assembly carrying a fiber stub coated in uncured epoxy. The slots are moved through a cleaving zone on the apparatus defined by the area between a cleaver and fiber holder, wherein the fiber stubs are cleaved and then pulled so the portion of the fiber stub extending from the ferrule assembly to the cleaved end has a specified length. After cleaving and pulling all the fiber stubs in the magazine, the magazine is detached from the apparatus and moved to an oven wherein the epoxy is cured. After cooling, the subunits and removed from the magazine to provide a plurality of subunits, each containing a cleaved fiber stub securely oriented therein.
Abstract:
A cable device includes an elongated transmission member that defines a central axis, outer cover, and illumination element. The outer cover has an outer surface and a bore along its length. The illumination element extends in a direction parallel to the central axis and along a length of the transmission member. The illumination element has first and second exposed portions extending through separated openings of the outer surface of the outer cover. Each of first and second cross-sections of the respective first and second exposed portions define respective first and second illumination element central axes extending through the cross-sections in one or more directions transverse to the central axis of the transmission member. The illumination element is configured to convey a given light such that the given light that enters the first exposed portion of the illumination element exits the second exposed portion of the illumination element.
Abstract:
A connector assembly includes an adapter (2250), a housing device (2211), a ferrule assembly, and a sensor (2230). The housing device is received by the adapter and has a bore, a front end, and a rear end opposite the front end. A ferrule (2117B) of the ferrule assembly is within the bore of the housing device and has a mating end extending beyond the front end of the housing device. The sensor is mounted on the rear end of the housing device, the rear end of the ferrule assembly, or on the adapter confronting and spaced apart from the housing device or the ferrule assembly. The sensor is configured for detecting a force applied by the housing device or the ferrule assembly, respectively. An electrical characteristic of the sensor changes to indicate a predetermined force has been applied by the housing device or the ferrule assembly, respectively.
Abstract:
An optical fiber termination system includes an optical fiber termination unit assembly, an enclosure, and a plurality of electronic or optical devices within the enclosure. The assembly includes a housing having an interior surface, a patch panel terminal coupled to the interior surface of the housing, an optical assembly, an input optical fiber, and a plurality of optical fibers. The input optical fiber extends into the housing to the optical signal assembly. The output optical fibers extend out of the housing from the patch panel terminal. The enclosure is separate from the housing. The optical signal assembly divides a light beam emitted from the optical signal assembly into a plurality of light beams that are received by the patch panel terminal. The output optical fibers are configured to convey respective light beams to any one or any combination of the plurality of electronic and optical devices in the enclosure.
Abstract:
An optical signal routing device (100) may include a first lens (120), second lens (140) and a wavelength division multiplexer ("WDM") (130) filter positioned between the first and second lenses. The WDM filter may reflect a signal of a first wavelength with a first attenuation and pass the first wavelength signal attenuated by at most a second attenuation to the second lens, the first attenuation exceeding the second attenuation by a first predetermined amount. The WDM filter may reflect a signal of a second wavelength different than the first wavelength with at most a third attenuation, the first attenuation exceeding the third attenuation by at least a second predetermined amount. The device may further include a reflector (170) positioned to reflect the first wavelength signal reflected by the WDM filter toward the WDM filter with at least a fourth attenuation, the fourth attenuation exceeding the second attenuation by at least a third predetermined amount.
Abstract:
A communication system (100) includes a housing (2), a tray (331), and a guide arm (700). The tray has a plurality of ports (7) each having a rear face connectable to a rear cable (RC, RC'). The tray is movably engaged with the housing and has a first position substantially inside the housing and a second position substantially outside the housing. The guide arm has a first end pivotably attached to the tray between the plurality of ports and a rear of the housing, and a second free end opposite the first end. The guide arm is adapted to rotate from a first rotational position in which the guide arm is substantially parallel to the rear of the housing to a second rotational position in which the free end points toward the rear of the housing as the tray transitions from the first position to the second position.
Abstract:
A connector assembly includes an adapter (650), a housing (611), a ferrule (617B), and a sensor (630). The housing (611) is received by the adapter (650) and has a bore (613). The ferrule (617B) is translatable within the bore (613) of the housing (611). The sensor (630) is mounted on the housing (611) or on the adapter (650). The sensor (630) is configured for detecting translation of the ferrule (617B). An electrical characteristic of the sensor (630) changes to indicate translation of the ferrule (617B) to a predetermined position.
Abstract:
Radially symmetric splicer joint and locking assemblies and connectors for optical fibers are provided. The assemblies use splicer joints formed from a slightly deformable plastic material. The splicer joints contain an axial bore having a diameter slightly less then the diameter of the stripped ends the optical fibers inserted into the axial bore. When a stripped fiber is inserted into the axial bore of the splicer joint, the bore expands slightly to frictionally receive the stripped end. The assemblies and connectors use radially symmetric locking to secure the fibers therein. The radially symmetric locking and the surface tension provided by the axial bore against the stripped ends of the fibers minimizes the occurrence of mis-alignment and reduces insertion and return losses.
Abstract:
A cable guide for guidance of at least one cable through a patch panel system, including a housing having front, back, left, and right sides, and at least one patch panel device including a tray and one or more adapters, the cable guide comprising an advancing member having a first end for coupling to the back side of the housing, a second end for coupling to the tray of the patch panel device, and a guide member disposed between the first and second ends, wherein the advancing member is transitionable between a first and second state, wherein, when the first and second ends are coupled respectively to the back side and the tray, in the first state, the guide member is positioned at least partially external to the housing at one of the left or right sides; and in the second state, the guide member is positioned within the housing.
Abstract:
An optical fiber termination system includes a housing, a cable, and a catch. The housing defines a portion of a passageway and a surface surrounding the passageway. The passageway defines a central axis and the surface defines an interior of the housing. The cable is receivable through the portion of the passageway. The cable includes an optical fiber and defines a longitudinal axis. The catch is receivable in the housing and attachable to and extendable from the cable in a direction transverse to the longitudinal axis such that the catch limits movement of the cable in a direction away from the interior of the housing when the catch is received in the housing and the cable is received through the portion of the first passageway.