Abstract:
An electron beam apparatus is disclosed that includes a plurality of current source elements disposed in at least one field emitter array. Each current source element can be a gated vertical transistor, an ungated vertical transistor, or a current controlled channel that is proximate to an optically-modulated current source. The electron beam apparatus includes a plurality of field emitter tips, each field emitter tip of the plurality of field emitter tips being coupled to a current source element of the plurality of current source elements. The electron beam apparatus is configured to allow selective activation of one or more of the current source elements.
Abstract:
A quadrupole mass filter (QMF) is provided. The QMF includes a plurality of rectangular shaped electrodes aligned in a symmetric manner to generate a quadrupole field. An aperture region is positioned in a center region parallel to and adjacent to each of the rectangular shaped electrodes. An incoming ion stream enters the aperture region so as to be controlled by the quadrupole field.
Abstract:
A transfer layer includes a transparent substrate. A buffer layer is formed on the transparent substrate that comprises PbO, GaN, PbTiO 3 , La 0.5 Sr 0.5 CoO 3 (LSCO), or La x Pb 1-x CoO 3 (LPCO) so that separation between the buffer layer and the transparent substrate occurs at substantially
Abstract:
A quadrupole mass filter (QMF) is provided. The QMF includes a plurality of rectangular shaped electrodes aligned in a symmetric manner to generate a quadrupole field. An aperture region is positioned in a center region parallel to and adjacent to each of the rectangular shaped electrodes. An incoming ion stream enters the aperture region so as to be controlled by the quadrupole field. A plurality of voltage sources provide a r.f. and d.c. signal to the electrodes for generating the quadrupole field. An auxiliary voltage source applies an auxiliary drive signal to the r.f. and d.c. signal to create new stability boundaries within the standard Mathieu stability regions with high-resolution around operating conditions where there are approximately no higher-order resonances.