Abstract:
According to an example, a dual in-line memory module (DIMM) may include a high density package substrate including a plurality of connectors for communicatively interconnecting the DIMM to a system, and a device including at least one of a first die including a plurality of wirebonds and associated wirebond pads to directly interface with the high density package substrate, and a second die including a plurality of connection pads to directly interface with the high density package substrate.
Abstract:
A circuit includes a resistive memory cell in a memory array to store a memory state for the resistive memory cell. A reference cell in the memory array stores a reference memory state for the resistive memory cell. A function generator concurrently applies a read voltage to the resistive memory cell and the reference cell via a memory row address. A sensing circuit enables the function generator and monitors a target current received from the resistive memory cell when selected via a memory column address and monitors a reference current received when selected via a reference column address in response to the read voltage applied to the memory row address. A current comparator circuit in the sensing circuit compares a difference between the target current and the reference current to determine the memory state of the resistive memory cell.
Abstract:
In some examples, a device includes a first processing core comprising a resistive memory array to perform an analog computation, and a digital processing core comprising a digital memory programmable with different values to perform different computations responsive to respective different conditions. The device further includes a controller to selectively apply input data to the first processing core and the digital processing core.
Abstract:
Example implementations relate to memory read requests. For example, an implementation may include tracking progress of an iterative write sequence to write data to a memory element of a memory module. A received read request is detected to be addressed to a memory bank that includes the memory element undergoing the iterative write sequence. Based on the tracked progress, a time is determined to interrupt the iterative write sequence with insertion of the read request. The time aligns between operations of the iterative write sequence and data is returned within a predetermined read latency.
Abstract:
An example device in accordance with an aspect of the present disclosure includes at least one current comparator, a plurality of threshold currents, and a controller. The current comparator is to compare a memristor current to a plurality of threshold currents. The controller is to set a desired memristance state of a memristor according to a memristance feedback tuning loop based on a plurality of threshold levels. The controller is to apply positive and negative voltages to the memristor during the feedback tuning loop to achieve the desired memristance state of the memristor.
Abstract:
A crossbar array includes a number of memory elements. An analog-to-digital converter (ADC) is electronically coupled to the vector output register. A digital-to-analog converter (DAC) is electronically coupled to the vector input register. A processor is electronically coupled to the ADC and to the DAC. The processor may be configured to determine whether division of input vector data by output vector data from the crossbar array is within a threshold value, and if not within the threshold value, determine changed data values as between the output vector data and the input vector data, and write the changed data values to the memory elements of the crossbar array.
Abstract:
A convolutional neural network system includes a first part of the convolutional neural network comprising an initial processor configured to process an input data set and store a weight factor set in the first part of the convolutional neural network; and a second part of the convolutional neural network comprising a main computing system configured to process an export data set provided from the first part of the convolutional neural network.
Abstract:
Devices and methods are provided. In one aspect, a device for driving a memristor array includes a substrate including a well having a bottom layer, a first wall and a second wall. The substrate is formed of a strained layer of a first semiconductor material. A vertical JFET is formed in the well. The vertical JFET includes a vertical gate region formed in a middle portion of the well with a gate region height less than a depth of the well. A channel region is formed of an epitaxial layer of a second semiconductor wrapped around the vertical gate region. Vertical source regions are formed on both sides of a first end of the vertical gate region, and vertical drain regions are formed on both sides of a second end of the vertical gate region.
Abstract:
The present disclosure provides a data storage device that includes a memory cell array and sense circuitry to detect a data value stored to a memory cell of the memory cell array. The data storage device also includes a controller to bias the sense circuitry during a read phase of a write operation to increase the probability that the sense circuitry will detect an opposite value that is opposite from the value being written to the memory cell.
Abstract:
A method of determining a current in a memory element of a crossbar array is described. In the method, a number of pre-access operations are initiated. Each pre-access operation includes discarding a previously stored sneak current, determining a new sneak current for the crossbar array, discarding a previously stored sneak current, and storing the new sneak current. In the method, in response to a received access command, an access voltage is applied to a target memory element of the crossbar array and an element current for the target memory element is determined based on an access current and a stored sneak current.