Abstract:
Transpose non-volatile (NV) memory (NVM) bit cells and related data arrays configured for memory row and column, transpose access operations. A plurality of transpose NVM bit cells can be arranged in memory rows and columns in a transpose NVM data array. To facilitate a row read operation, the transpose NVM bit cell includes a first access transistor coupled to a word line. An activation voltage is applied to the word line to activate the first access transistor to read a memory state stored in the NVM cell circuit in a row read operation. To facilitate a column, transpose read operation, the transpose NVM bit cell includes a second access transistor coupled to a transpose word line. An activation voltage is applied to the transpose word line to activate the second access transistor to read the memory state stored in the NVM cell circuit in a column, transpose read operation.
Abstract:
A method to adaptively and dynamically set a bias scheme of a crossbar array for a write operation includes: performing a read-before-write operation to determine a number of cells n to be written during a write operation; comparing n to a predetermined threshold value to determine an efficient bias scheme; setting at least one voltage regulator to provide a bias voltage according to the efficient bias scheme; and performing the write operation. A method to determine threshold value to determine an efficient bias scheme of a crossbar array and an energy efficient crossbar array device are also described.
Abstract:
A two transistor, one resistor gain cell and a suitable storage element are described. In some embodiments the gain cell has a resistive memory element coupled to a common node at one end to store a value and to a source line at another end, the value being read as conductivity between the common node and the source line of the resistive memory element, a write transistor having a source coupled to a bit line, a gate coupled to a write line, and a drain coupled to the common node to write a value at the bit line to the resistive memory element upon setting the write line high, and a read transistor having a source coupled to a bit line read line and a gate coupled to the common node to read the value written to the resistive memory element as a value at the second transistor gate.
Abstract:
Systems and methods for generating periodic signals with reduced duty cycle variation are described. In some cases, a calibration procedure may be performed prior to a memory operation (e.g., prior to a read operation or a programming operation) in which a duty cycle correction circuit receives an input signal (e.g., an input clock signal), steps through various delay settings to determine a first delay setting corresponding with a signal high time for the input signal and a second delay setting corresponding with a signal low time for the input signal, generates a delayed version of the input signal corresponding with a mid-point delay setting between the first delay setting and the second delay setting, and generates a corrected signal using the delayed version of the input signal and the input signal.
Abstract:
A resistive RAM memory cell and array are described that include an electroforming functionally. One example includes a first resistive memory material, a first electrode on one side of the first resistive memory material, a second resistive memory material, a second electrode on one side of the second resistive memory material, a middle electrode between the first electrode and the second electrode, the middle electrode electrically coupled to the first resistive memory material on a side of the first resistive memory material opposite the first electrode and electrically coupled to the second resistive memory material and on a side of the second resistive memory material opposite the second electrode, and a power connector to apply a potential to the middle electrode, the potential being opposite a potential of the first electrode and the second electrode.
Abstract:
In one example in accordance with the present disclosure a memristive bit cell is described. The memristive bit cell includes a memristive device switchable between states. The memristive device is to store information. The memristive bit cell also includes a first switch regulating component coupled to the memristive device. The first switch regulating component enforces compliance of the memristive device with a first property threshold when switching between states in a first direction. The first property threshold corresponds to a state of the memristive device. The memristive bit cell also includes a second switch regulating component coupled to the memristive device. The second switch regulating component enforces compliance of the memristive device with a second property threshold when switching between states in a second direction. The second property threshold corresponds to a state of the memristive device.
Abstract:
A configurable impeder is provided. The configurable impeder comprises multiple Correlated Electron Switches(CESs). Each of the CESs is capable of being configured into one of a plurality of impedance states. Further, a programing circuit is provided. The programing circuit provides a plurality of programing signals in dependence of an input signal. Each programing signal configures an impedance state of a respective CESfrom the plurality of CESs.
Abstract:
A nonvolatile memory cell includes a volatile selector electrically coupled in series with a nonvolatile memory device. The nonvolatile memory device includes a switching oxide or switching nitride sandwiched between a first bottom electrode and a first top electrode. The volatile selector includes a selector oxide matrix sandwiched between a second bottom electrode and a second top electrode. The selector oxide matrix may be composed of either copper oxide, silicon dioxide, or a mixture of copper oxide and silicon dioxide. One or both of the second bottom electrode and the second top electrode may be composed of silver. A memory array including a plurality of the nonvolatile memory cells is also disclosed, as is a method for manufacturing the array.
Abstract:
A memory cell includes an input coupled to a read line, an output coupled to a circuit ground, a bi-polar memristor, and at least one address switch coupled to an address line to select the memory cell. A memory includes the bi-polar memristor and a one-way current conducting device, wherein the one-way current conducting device is positioned between the memristor cell output and the circuit ground, or between the read line and the memristor cell input.