Abstract:
An electronic device comprising: a power monitor to receive system power to be delivered to a processor and to one or more components of a system, the power monitor to provide information corresponding to the system power, and a processor to change a performance of the processor based at least in part on the information corresponding to the system power.
Abstract:
An apparatus may include first circuitry coupled to one or more platform components, the first circuitry operative to receive an unfiltered input voltage signal, compare a first voltage level of the unfiltered input voltage signal to a first reference voltage level, and generate a control signal operative to lower operation power of one or more of the one or more platform components when the first voltage level is less than the first reference voltage level.
Abstract:
Aspects of the embodiments are directed to systems, methods, and program products for rebalancing power in a multi-chip computing platform, which includes a core processor and a discrete peripheral processor. Embodiments include determining that the core processor and the discrete peripheral processor are in a limited usage state; altering a polling interval of the core processor and the discrete peripheral processor from a first polling time to a second polling time, the second polling time greater than the first polling time; and polling the core processor and the discrete peripheral processor after an expiration of the second polling time. Embodiments also include using thermal and/or energy consumption data to dynamically adjust polling times to permit the core processor and the discrete peripheral processor to remain in an idle or low power state for as long as possible.
Abstract:
Methods and apparatus relating to priority based intelligent platform passive thermal management are described. In one embodiment, the power consumption limit of one or more components of a platform is modified based on one or more thermal relationships between one or more power consuming components of the platform and one or more heat generating components of the platform. Furthermore, a first relationship of the one or more thermal relationships indicates an influence priority of a source component of the platform on a target component of the platform. Other embodiments are also claimed and disclosed.
Abstract:
Methods and apparatus relating to table driven multiple passive trip, platform passive thermal management are described. In one embodiment, the power consumption limit of one or more components of a platform is modified based on one or more thermal relationships between one or more power consuming components of the platform and one or more heat generating components of the platform. Furthermore, a first relationship of the one or more thermal relationships indicates a mapping between a plurality of temperature thresholds and a corresponding plurality of performance limits. Other embodiments are also claimed and disclosed.
Abstract:
In one embodiment, a processor includes at least one core to execute instructions and a power control logic to receive power capability information from a plurality of devices to couple to the processor and allocate a platform power budget to the devices, set a first power level for the devices at which the corresponding device is allocated to be powered, communicate the first power level to the devices, and dynamically reduce a first power to be allocated to a first device and increase a second power to be allocated to a second device responsive to a request from the second device for a higher power level. Other embodiments are described and claimed.
Abstract:
Methods and apparatus relating to controlling power consumption by a Power Supply Unit (PSU) during idle state are described. In one embodiment, a power supply unit enters a lower power consumption state (e.g., S9) based on power state information, corresponding to one or more components of the platform, and comparison of a first value (corresponding to a frequency/frequentness of entry into the lower power consumption state) to a first threshold value. Other embodiments are also disclosed and claimed.
Abstract:
Methods and apparatus relating to total platform power control are described. In one embodiment, power consumption by one or more processor cores of a processor and one or more components coupled to the processor are modified based on a total platform power consumption value. The platform, in turn, includes the processor and the one or more components. Other embodiments are also disclosed and claimed.
Abstract:
An electronic apparatus is provided that includes a processor, a voltage regulator, a battery controller and an embedded controller. The voltage regulator to receive an input voltage and to provide an output voltage to the processor. The battery controller to store electronic device information and to receive battery information related to a current battery power. The embedded controller to receive the electronic device information and the battery information from the battery controller, and the embedded controller to provide power information to the processor based on the received information.