Abstract:
A replacement physical layer (PHY) for low-speed Peripheral Component Interconnect (PCI) Express (PCIe) systems is disclosed. In one aspect, an analog PHY of a conventional PCIe system is replaced with a digital PHY. The digital PHY is coupled to a media access control (MAC) logic by a PHY interface for PCIe (PIPE) directly. In further exemplary aspects, the digital PHY may be a complementary metal oxide semiconductor (CMOS) PHY that includes a serializer and a deserializer. Replacing the analog PHY with the digital PHY allows entry and exit from low-power modes to occur much quicker, resulting in substantial power savings and reduced latency. Because the digital PHY is operable with low-speed communication, the digital PHY can maintain sufficient bandwidth that communication is not unnecessarily impacted by digital logic of the digital PHY.
Abstract:
A computing component is provided with physical layer logic to receive data on a physical link including a plurality of lanes, where the data is received from a particular component on one or more data lanes of the physical link. The physical layer is further to receive a stream signal on a particular one of the plurality of lanes of the physical link, where the stream signal is to identify a type of the data on the one or more data lanes, the type is one of a plurality of different types supported by the particular component, and the stream signal is encoded through voltage amplitude modulation on the particular lane.
Abstract:
Aspects of the invention are related to a method for allocating spare resources in a device. The exemplary method comprises: determining spare resources available in a plurality of consecutive time quanta; determining a plurality of candidate operations, wherein each candidate operation is associated with a cost profile with respect to time and a benefit value; and allocating the spare resources for performance of one or more of the candidate operations.
Abstract:
A system, method and device for providing over-current protection to USB ports comprised in a USB hub, whereby a single switch is used to control the power supply to one or more groups of U SB ports based on determinations whether the current drawn by a group of USB ports has exceeded a predefined current limit. Embodiments provide the cost savings associated with gang mode power port switching and the reduced stress on USB components and individualized protection of USB ports associated with individual mode power switching. Embodiments utilize a plurality of current measurement units to measure the current drawn by each group of USB ports supported by a switch and further utilize a power port control logic unit to control the switch based on whether the current measurements have exceeded a current limit.
Abstract:
The present invention relates to powering electronic peripheral devices. Specifically, the present invention relates to switching, combining, and/or partially using power sources to efficiently and fully power peripheral devices, especially devices with high demand in voltage and/or current. More specifically, the present invention relates to drawing power from a direct current port and an alternate power source.
Abstract:
Techniques for reducing idle power consumption of a port are described herein. An example method includes determining device presence using a pull-down resistor disposed in a downstream port. The method also includes initiating a low power state of a link between the downstream port and an upstream device. The method also includes disabling the pull-down resistor in response to initiating the low power state.
Abstract:
A method is described, the method comprising scanning for a Bluetooth Low Energy data signal, and if a Bluetooth Low Energy data signal is detected, responding to detection of the Bluetooth Low Energy data signal by suspending the performance of wireless network discovery procedures in respect of at least one network operating using a protocol other than Bluetooth Low Energy. Also described is a method comprising causing generation and transmission of a Bluetooth Low Energy data signal, the generated and transmitted Bluetooth Low Energy data signal indicating the absence of at least one network which operates using a protocol other than Bluetooth Low Energy. Also described are apparatus, computer-readable code, and non-transitory computer-readable memory media having computer readable code stored thereon for causing performance of one or both of the methods.
Abstract:
Systems and methods for operating a universal serial bus are described herein. The method includes sending packet data from a USB2 device to a USB2 host on a pair of signal lines, and after sending the packet data, sending an End-Of-Packet (EOP) signal from the USB2 device to the USB2 host. The method also includes, entering the USB2 device into idle state after sending the EOP signal. The method also includes sending a digital ping from the USB2 device to the USB2 host to indicate device presence during idle state.
Abstract:
Methods and apparatus for provision of a low power, low frequency squelch break protocol are described. In some embodiments, a fixed or variable time transmitter LFPS (Low Frequency Periodic Signaling) mechanism may be used that does not require a handshake and therefore much simpler in implementation than USB3 (Universal Serial Bus 3.0), for example. Also, an embodiment does not require a link common mode to be established and therefore may be optimized to support shorter durations for effecting exit from an electrical idle state that may be established via power-gating, for example. Other embodiments are also disclosed.