摘要:
Integration of a side-radiating waveguide launcher system into a semiconductor package beneficially permits the coupling of a waveguide directly to the semiconductor package. Included are a first conductive member and a second conductive member separated by a dielectric material. Also included is a conductive structure, such as a plurality of vias, that conductively couples the first conductive member and the second conductive member. Together, the first conductive member, the second conductive member, and the conductive structure form an electrically conductive side-radiating waveguide launcher enclosing shaped space within the dielectric material. The shaped space includes a narrow first end and a wide second end. An RF excitation element is disposed proximate the first end and a waveguide may be operably coupled proximate the second end of the shaped space.
摘要:
Embodiments of the invention include autonomous vehicles and mm-wave systems for communication between components. In an embodiment the vehicle includes an electronic control unit (ECU). The ECU may include a printed circuit board (PCB) and a CPU die packaged on a CPU packaging substrate. In an embodiment, the CPU packaging substrate is electrically coupled to the PCB. The ECU may also include an external predefined interface electrically coupled to the CPU die. In an embodiment, an active mm-wave interconnect may include a dielectric waveguide, and a first connector coupled to a first end of the dielectric waveguide. In an embodiment, the first connector comprises a first mm-wave engine, and the first connector is electrically coupled to the external predefined interface. Embodiments may also include a second connector coupled to a second end of the dielectric waveguide, wherein the second connector comprises a second mm-wave engine.
摘要:
Embodiments of the invention may include a mm-wave waveguide. In an embodiment, the mm-wave waveguide may include a first dielectric waveguide and a second dielectric waveguide. A conductive layer may be used to cover the first dielectric waveguide and the second dielectric waveguide in some embodiments. Furthermore, embodiments may include a repeater communicatively coupled between the first dielectric waveguide and the second dielectric waveguide. In an embodiment, the repeater may be an active repeater or a passive repeater. According to an embodiment, a passive repeater may be integrated within the dielectric waveguide. The passive repeater may include a dispersion compensating material that produces a dispersion response in a signal that is substantially opposite to a dispersion response produced when the signal is propagated along the dielectric waveguide.
摘要:
Embodiments of the invention include an active mm-wave interconnect. In an embodiment, the active mm-wave interconnect includes a dielectric waveguide that is coupled to a first connector and a second connector. According to an embodiment, each of the first and second connectors may include a mm-wave engine. In an embodiment, the mm-wave engines may include a power management die, a modulator die, a demodulator die, a mm-wave transmitter die, and a mm-wave receiver die. Additional embodiments may include connectors that interface with predefined interfaces, such as small form-factor pluggables (SFP), quad small form-factor pluggables (QSFP), or octal small form-factor pluggables (OSFP). Accordingly, embodiments of the invention allow for plug and play functionality with existing servers and other high performance computing systems.
摘要:
Embodiments of the invention include a mm-wave waveguide connector and methods of forming such devices. In an embodiment the mm-wave waveguide connector may include a plurality of mm-wave launcher portions, and a plurality of ridge based mm-wave filter portions each communicatively coupled to one of the mm-wave launcher portions. In an embodiment, the ridge based mm-wave filter portions each include a plurality of protrusions that define one or more resonant cavities. Additional embodiments may include a multiplexer portion communicatively coupled to the plurality of ridge based mm-wave filter portions and communicative coupled to a mm-wave waveguide bundle. In an embodiment the plurality of protrusions define resonant cavities with openings between 0.5 mm and 2.0 mm, the plurality of protrusions are spaced apart from each other by a spacing between 0.5 mm and 2.0 mm, and wherein the plurality of protrusions have a thickness between 200 µm and 1,000 µm
摘要:
Generally, this disclosure provides apparatus and systems for coupling waveguides to a server package with a modular connector system, as well as methods for fabricating such a connector system. Such a system may be formed with connecting waveguides that turn a desired amount, which in turn may allow a server package to send a signal through a waveguide bundle in any given direction without bending waveguides.
摘要:
Embodiments of the invention include a dispersion reduced dielectric waveguide and methods of forming such devices. In an embodiment, the dispersion reduced dielectric waveguide may include a first dielectric material that has a first Dk-value, and a second dielectric material that has a second Dk-value that is greater than the first Dk-value. In an embodiment, the dispersion reduced dielectric waveguide may also include a conductive layer formed around the first and second dielectric materials. According to an embodiment, a first portion of a bandwidth of a signal that is propagated along the dispersion reduced dielectric waveguide is primarily propagated along the first dielectric material, and a second portion of a bandwidth of the signal that is propagated along the dispersion reduced dielectric waveguide is primarily propagated along the second dielectric material.
摘要:
A millimeter wave (mm-wave) communication interface includes a first semiconductor package coupled to a first substrate and a second semiconductor package coupled to a second substrate. The second substrate may be coupled at approximately a 90° angle to the first substrate. The second semiconductor package may include a mm-wave die that modulates digital data on a high frequency microwave signal and a mm-wave launcher that launches the modulated high-frequency microwave signal into a waveguide member operably coupled to the second substrate. In such an implementation, the waveguide member may beneficially exit the second substrate along a longitudinal axis parallel to the principal plane of the first substrate. Advantageously, all high-frequency components are close coupled to the second substrate without the use of an intervening interface.
摘要:
Embodiments of the invention include dielectric waveguides and connectors for dielectric waveguides. In an embodiment a dielectric waveguide connector may include an outer ring and one or more posts extending from the outer ring towards the center of the outer ring. In some embodiments, a first dielectric waveguide secured within the dielectric ring by the one or more posts. In another embodiment, an enclosure surrounding electronic components may include an enclosure wall having an interior surface and an exterior surface and a dielectric waveguide embedded within the enclosure wall. In an embodiment, a first end of the dielectric waveguide is substantially coplanar with the interior surface of the enclosure wall and a second end of the dielectric waveguide is substantially coplanar with the exterior surface of the enclosure wall.
摘要:
An apparatus comprises a waveguide section including an outer layer of conductive material tubular in shape and having multiple ends; and a joining feature on at least one of the ends of the waveguide section configured for joining to a second separate waveguide section.