Abstract:
Provided is a cellulosic composite comprised of cellulosic material and a binder. The binder comprises an aldehyde or ketone and amine salt of an inorganic acid. The composition when mixed with cellulosic material and cured forms a cellulosic composite.
Abstract:
Provided is a fiberglass binder composition which comprises epoxidized oil and a multifunctional carboxylic acid or anhydride. The resultant binder provides minimal processing difficulties and a fiberglass product which exhibits minimal water absorption.
Abstract:
Provided is a fiberglass binder composition which comprises maleinized polyenes and a reactive component selected from the group consisting of alkanolamines, polyols, and monomers containing terminal unsaturation. The resultant binder provides minimal processing difficulties and a fiberglass product which exhibits good water absorption properties.
Abstract:
Formaldehyde-free binder compositions are described that include an aldehyde or ketone, an organic anhydride, an alkanol amine, and a nitrogen-containing salt of an inorganic acid. The binder compositions may be applied to fibers, such as glass fibers, to make formaldehyde-free, fiber-reinforced composites. Methods of making fiber- reinforced composites are also described, where such methods may include mixing an alkanol amine with an organic anhydride to make a first mixture, and adding a reducing sugar to the first mixture to make a second mixture. A nitrogen-containing salt may be added to the second mixture to make a binder composition, which may be applied to fibers to form a binder-fiber amalgam. The amalgam may be heated to cure the binder composition and form the fiber-reinforced composite.
Abstract:
A curable formaldehyde-free binding composition for use with fiberglass is provided. Such curable composition comprises a substantially unpolymerized acrylate and/or methacrylate primarily having no more than approximately six recurring moieties. The composition is either unpolymerized at the time of its application to the fiberglass or in the form of an oligomer. The curable composition is coated on fiberglass and thereafter is cured to form a secure binder. In a preferred embodiment the fiberglass is the form of building insulation. In other embodiments the product is a microglass-based substrate useful for as a printed circuit board, battery separator, filter stock, or reinforcement scrim.
Abstract:
A curable formaldehyde-free binding composition for use with fiberglass is provided. Such curable composition comprises an aldehyde or ketone and an amine salt of an inorganic acid. The composition when applied to fiberglass is cured to form a water- insoluble binder which exhibits good adhesion to glass. In a preferred embodiment the fiberglass is in the form of building insulation or reinforcement for a roofing membrane. In other embodiments the product is a microglass-based substrate for use in a printed circuit board, battery separator, filter stock, or reinforcement scrim.
Abstract:
A curable formaldehyde-free binding composition for use with fiberglass is provided. Such curable composition comprises a reaction product of a multi- aldehyde or multi-ketone and a phenolic compound. When heated, the reaction product undergoes curing to form a water-insoluble cured benzohydro-benzofurane binder which exhibits good adhesion to glass. In a preferred embodiment, a reaction product of a multi-aldehyde and a phenolic compound having more than one phenolic group initially is formed. The fiberglass can be provided in various configurations when bound by the binding composition of the present invention, and preferably is in the form of a non-woven. In a particularly preferred embodiment, the final product is a mat or building insulation.
Abstract:
Provided are nonwoven polymeric fiber webs using an improved curable composition. Such curable composition comprises a reaction product of an amine and a reactant in the form of an ammo-amide intermediate. To the ammo-amide is added an aldehyde or ketone to form the curable binder composition. The composition when applied to the polymeric fibers is cured to form a water-insoluble polymer binder which exhibits good adhesion and thermo-dimensional stability.
Abstract:
A curable formaldehyde-free binding composition for use with fiberglass is provided. Such curable composition comprises a conjugate addition product of an amine and an unsaturated reactant in the form of a β-amino-ester or β-amino-amide intermediate. The composition when coated on fiberglass is cured to form a water-insoluble polyamide or polyimide binder which exhibits good adhesion to glass. In a preferred embodiment the fiberglass is in the form of building insulation. In other embodiments the product is a microglass-based substrate for use in a printed circuit board, battery separator, filter stock, or reinforcement scrim.
Abstract:
A curable formaldehyde-free binding composition for use with fiberglass is provided. Such curable composition comprises an acid-catalyzed reaction product of an aldehyde or ketone with a multihydric alcohol. When heated, the composition forms polyacetal or polyketal that undergoes curing to form a water-insbluble resin binder which exhibits good adhesion to glass. In a preferred embodiment, maleic anhydride initially serves as a catalyst and subsequently enters into a cross-linking reaction during curing to form a poly(ester-acetal). Also, in a preferred embodiment, the fiberglass is in the form of building insulation. In other embodiments the product can be a microglass-based substrate for use in a printed circuit board, battery separator, filter stock, or reinforcement scrim.