Abstract:
An ultrasonic mixing system having a treatment chamber in which at least two separate phases can be mixed to prepare an emulsion is disclosed. Specifically, at least one phase is a dispersed phase and one phase in a continuous phase. The treatment chamber has an elongate housing through which the phases flow longitudinally from a first inlet port and a second inlet port, respectively, to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the phases within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the phases being mixed in the chamber.
Abstract:
An ultrasonic treatment system having a treatment chamber for treating a formulation to increase the shelf life thereof. In one embodiment, the shelf life is produced by degassing the formulation using the treatment chamber. Specifically, the treatment chamber has an elongate housing through which a formulation flows longitudinally from an inlet port to a first outlet port and a second outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the formulation within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the formulation being treated in the chamber.
Abstract:
A method comprises providing a first electrically-conductive circuit-path (22), and separately providing a second electrically-conductive circuit-path (24). A portion of the first circuit-path is positioned proximally adjacent a portion of the second circuit-path at a first predetermined electrical bond location (26). A first, electrically-insulating barrier layer (28) is interposed between the first circuit-path and second circuit-path at the first bond location, and the first circuit-path is mechanically bonded to the second circuit-path at the first bond location. The mechanical bonding configured to provide an electrically-conductive bond-path between the first circuit-path and the second circuit-path at the first bond location. The mechanical bonding may desirably include ultrasonic bonding and/or pressure bonding.
Abstract:
A composition comprising particles with a transition metal imbedded therein is disclosed. Specifically, the ratio of particles to the transition metal is from about 25:1 to about 50:1. The composition is prepared in the presence of ultrasonic energy. The particles are selected from the group consisting of organic particles, inorganic particles, and metal particles.
Abstract:
A process for treating a textile web includes applying a first treatment agent to the web. The web is moved in an open configuration over a contact surface of an ultrasonic vibration system. The ultrasonic vibration system is operated to impart ultrasonic energy to the textile web to facilitate the distribution of the first treatment agent through a first extent of the thickness of the textile web. A second treatment agent is applied to the web. The web is moved in an open configuration thereof over a contact surface of an ultrasonic vibration system. The ultrasonic vibration system is operated to impart ultrasonic energy to the textile web to facilitate the distribution of the second treatment agent through a second extent of the thickness of the web. The second extent is different than the first extent.
Abstract:
Delivery systems for incorporating functional compounds into substrates for use in various consumer products are disclosed. Specifically, the delivery system includes a carrier component comprising an ultrasonically energized and electrically charged adsorbent and one or more functional compounds. The ultrasonically energized and electrically charged adsorbent can adsorb the desired functional compounds and bind the functional compounds to the surface of the substrate.
Abstract:
A fuel injector for delivering fuel to an engine in which a housing of the injector has an internal fuel chamber and at least one exhaust port in fluid communication with the fuel chamber. A valve member is moveable relative to the housing between a closed position in which fuel within the fuel chamber is inhibited against exhaustion from the housing, and an open position in which fuel is exhaustable from the housing. An ultrasonic waveguide is separate from the housing and valve member, with substantially the entire ultrasonic waveguide disposed within the fuel chamber to ultrasonically excite fuel within the fuel chamber prior to the fuel exiting through the at least one exhaust port in the open position of the valve member. An excitation device is operable in the open position of the valve member to ultrasonically excite the ultrasonic waveguide.
Abstract:
A method of preparing metal-modified silica particles is disclosed. Specifically, a treatment chamber is provided in which a first and a second formulation are ultrasonically mixed to prepare metal-modified silica particles. The treatment chamber has an elongate housing through which the first and second formulations flow longitudinally from a first inlet port and a second inlet port, respectively, to an outlet port thereof. An elongate ultrasonic waveguide assembly extends within the housing and is operable at a predetermined ultrasonic frequency to ultrasonically energize the formulations within the housing. An elongate ultrasonic horn of the waveguide assembly is disposed at least in part intermediate the inlet and outlet ports, and has a plurality of discrete agitating members in contact with and extending transversely outward from the horn intermediate the inlet and outlet ports in longitudinally spaced relationship with each other. The horn and agitating members are constructed and arranged for dynamic motion of the agitating members relative to the horn at the predetermined frequency and to operate in an ultrasonic cavitation mode of the agitating members corresponding to the predetermined frequency and the formulations being mixed in the chamber.
Abstract:
An ultrasonic liquid delivery device including a housing having an internal chamber and at least one exhaust port communicating with the internal chamber. An ultrasonic waveguide in the internal chamber ultrasonically energizes liquid within the chamber prior to the liquid being exhausted through the exhaust port. The waveguide includes a valve member movable relative to the housing between a closed position closing the exhaust port, and an open position. An excitation device is operable in the open position of the valve member to ultrasonically excite the ultrasonic waveguide to atomize liquid exiting the exhaust port.
Abstract:
In a control system and method for operating an ultrasonic liquid delivery device, an ultrasonic waveguide, separate from the housing, is disposed at least in part within an internal chamber of the housing to ultrasonically energize liquid prior to the liquid being exhausted from the housing through an exhaust port. An excitation device is operable to ultrasonically excite the waveguide and a control system controls operation of the liquid delivery device between an excitation mode in which the excitation device is operated at an excitation frequency to excite the ultrasonic waveguide and a ring down mode in which the excitation device is inoperable to excite the waveguide such that the waveguide rings down. The control system monitors the ring down and is responsive to the ring down to adjust the excitation frequency of the excitation device in the excitation mode thereof.