Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and - first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and - diffraction patterns. The + and - diffraction patterns may be compared to calculate the overlay between successive layers.
Abstract:
Systems and methods are provided which utilize optical microcavity probes to map wafer topography by near-field interactions therebetween in a manner which complies with high volume metrology requirements. The optical microcavity probes detect features on a wafer by shifts in an interference signal between reference radiation and near-field interactions of radiation in the microcavities and wafer features, such as device features and metrology target features. Various illumination and detection configurations provide quick and sensitive signals which are used to enhance optical metrology measurements with respect to their accuracy and sensitivity. The optical microcavity probes may be scanned at a controlled height and position with respect to the wafer and provide information concerning the spatial relations between device and target features.
Abstract:
Metrology targets, target design methods and metrology methods are provided. Metrology targets comprise target elements belonging to two or more target element types. Each target element type comprises unresolved features which offset specified production parameters to a specified extent and thus provide sensitivity monitoring and optimization tools for process parameters such as focus and dose.
Abstract:
A segmented mask includes a set of cell structures, wherein each cell structure includes a set of features having an unresolvable segmentation pitch along a first direction, wherein the unresolvable segmentation pitch along the first direction is smaller than the illumination of the lithography printing tool, wherein the plurality of cell structures have a pitch along a second direction perpendicular to the first direction, wherein the unresolvable segmentation pitch is suitable for generating a printed pattern for shifting the best focus position of the lithography tool by a selected amount to achieve a selected level of focus sensitivity.
Abstract:
Metrology systems and methods are provided herein, which comprise an optical element that is positioned between an objective lens of the system and a target. The optical element is arranged to enhance evanescent modes of radiation reflected by the target. Various configurations are disclosed, the optical element may comprise a solid immersion lens, a combination of Moiré-elements and solid immersion optics, dielectric-metal-dielectric stacks of different designs, and resonating elements to amplify the evanescent modes of illuminating radiation. The metrology systems and methods are configurable to various metrology types, including imaging and scatterometry methods.
Abstract:
Metrology targets, target design methods and metrology measurement methods are provided, which estimate the effects of asymmetric aberrations, independently or in conjunction with metrology overlay estimations. Targets comprise one or more pairs of segmented periodic structures having a same coarse pitch, a same 1:1 line to space ratio and segmented into fine elements at a same fine pitch, wherein the segmented periodic structures differ from each other in that one thereof lacks at least one of its corresponding fine elements and/or in that one thereof comprises two groups of the fine elements which are separated from each other by a multiple of the fine pitch. The missing element(s) and/or central gap enable deriving the estimation of aberration effects from measurements of the corresponding segmented periodic structures. The fine pitches may be selected to correspond to the device fine pitches in the corresponding layer.
Abstract:
A metrology system includes an image device and a controller. The image device includes a spectrally-tunable illumination device and a detector to generate images of a sample having metrology target elements on two or more sample layers based on radiation emanating from the sample in response to illumination from the spectrally-tunable illumination device. The controller determines layer-specific imaging configurations of the imaging device to image the metrology target elements on the two or more sample layers within a selected image quality tolerance in which each layer-specific imaging configuration includes an illumination spectrum from the spectrally-tunable illumination device. The controller further receives one or more images of the metrology target elements on the two or more sample layers generated using the layer-specific imaging configurations. The controller further provides a metrology measurement based on the one or more images of the metrology target elements on the two or more sample layers.
Abstract:
Scatterometry overlay targets as well as target design and measurement methods are provided, which mitigate the effects of grating asymmetries in diffraction based overlay measurements. Targets comprise additional cells with sub-resolved structures replacing resolved coarse pitch gratings and/or comprise alternating sub-resolved structures with coarse pitch periodicity - to isolate and remove inaccuracies that result from grating asymmetries. Measurement methods utilize orthogonally polarized illumination to isolate the grating asymmetry effects in different measurement directions, with respect to the designed target structures.
Abstract:
A method of monitoring overlay is used in a manufacturing process in which successive layers are deposited one over another to form a stack. Each layer may include a periodic structure such as a diffraction grating to be aligned with a periodic structure in another layer. The stacked periodic structures may be illuminated to form + and - first order diffraction patterns from the periodic structures. An image of the stacked periodic structures may be captured including + and - diffraction patterns. The + and - diffraction patterns may be compared to calculate the overlay between successive layers.
Abstract:
Metrology targets and target design methods are provided, in which target elements are defined by replacing elements from a periodic pattern having a pitch p, by assist elements having at least one geometric difference from the replaced elements, to form a composite periodic structure that maintains the pitch p as a single pitch. Constructing targets within the bounds of compatibility with advanced multiple patterning techniques improves the fidelity of the targets and fill factor modulation enables adjustment of the targets to produce sufficient metrology sensitivity for extracting the overlay while achieving process compatibility of the targets.