Abstract:
The present invention provides a spectroscopic system as well as a method of autonomous tuning of a spectroscopic system and a corresponding computer program product. By detecting the position of return radiation in a transverse plane of an aperture of a spectroscopic analysis unit, a control signal can be generated that allows to drive servo driven translation or tilting stages of optical components. In this way a transverse misalignment of a spectroscopic system can be effectively detected. Generally, a plurality of different detection schemes are realizable allowing for an autonomous tuning of the spectroscopic system and for autonomous elimination of misalignment of a spectroscopic system.
Abstract:
An apparatus for optical body analysis is built with an illumination and detection head, and an optical coupler. The illumination and detection head comprises a light source for illuminating a body portion to analyze through the optical coupler and a detector for receiving light diffusely reflected by the body portion. The optical coupler is mechanically decoupled from the illumination and detection head and is adapted to be in contact with an outer surface of the body portion while the contact between the optical coupler and the body portion minimally affects physical properties of the body portion. The apparatus may further comprise a position unit adapted to adjust the position of the illumination and detection head relative to the optical coupler so that the detector receives through the optical coupler light generated by the light source and diffusely reflected by the body portion.
Abstract:
An optical detector for spectroscopic analysis of a substance within a given spectrum has a first resolution at a first part of the spectrum (101,102) and a second resolution, different from the first resolution, at a second part of the spectrum, different from the first part of the spectrum. High resolution may be used at the important parts of the spectrum only, which thus results in less overall resolution. The detector may be used in a non-invasive glucose detection system having non-equally distributed spectral resolution.
Abstract:
The invention relates to an identification method carried out as follows. A surface structure and an inner structure of a body member are measured (ST1-ST4, ST7) so as to obtain a surface-structure measurement result (FPM) and an inner-structure measurement result (BVPM), respectively. The surface-structure measurement result (FPM) is compared (ST5) with a surface-structure reference result (FPR) that distinguishes an individual from other individuals. The inner-structure measurement result (BVPM) is compared (ST8) with an inner-structure reference result (BVPR) that is associated with the same individual and that distinguishes the individual from other individuals. The body member may be, for example, a finger. In that case, the surface structure comprises a fingerprint and the inner structure comprises a blood-vessel pattern.
Abstract:
The invention provides an optical analysis system for efficient compensation of spectroscopic broadband background, such as spectroscopic fluorescence background or background signals that are due to the dark current of a detector. The optical analysis system effectively provides multivariate optical analysis of a spectroscopic signal. It provides wavelength selective detection of various spectral components that are indicative of a superposition of spectroscopic peaks or bands and their broadband background. Additionally, the optical analysis system is adapted to acquire spectral components that predominantly correspond to the broadband background of the spectroscopic peaks or bands. Wavelength selective selection of various spectral components is performed on the basis of reconfigurable multivariate optical elements or on the basis of a position displacement of a spatial optical transmission mask.
Abstract:
The present invention provides a spectroscopic system and a transmission based imaging system for a spectroscopic system as well as a probe head for a transmission based imaging system for a spectroscopic system and a corresponding transmission based imaging method. The spectroscopic system is preferably applicable to in vivo noninvasive blood analysis. Transmission based im tging makes use of a transmitted portion of an imaging or monitoring beam that has been transmitted through biological tissue. By means of transmission based imaging, a contrast decreasing impact of scattered radiation can be effectively reduced. Additionally, by arr anging the imaging light source opposite to an objective lens of the spectroscopic system, unintended propagation of spectroscopic excitation radiation into free space can be effectively prevented.
Abstract:
The present invention provides an optical analysis system for determining an amplitude of a principal component of an optical signal. The principle component is indicative of the concentration of a particular compound of various compounds of a substance that is subject to spectroscopic analysis. The optical signal is subject to a wavelength selective weighting. Spectral weighting is preferably performed by means of spatial light manipulation means in combination with a dispersive optical element. The inventive calibration mechanism and method effectively allows for an accurate positioning of the spatial light manipulation means. Calibration is based on a calibration segment on the spatial light manipulation means in combination with a reference light source and a detector.
Abstract:
The invention relates to a personal identification method and to a corresponding apparatus. Their elements are mainly a light source emitting a beam of light towards a target, a first imaging module receiving a return beam coming back from said target and displaying an image of the target of a first type, and a second imaging module also receiving said return beam and displaying an image of the target of a second type. An identification module allows to combine the information given by said image of a first type and said image of a second type and to identify, or not, a person according to a similarity criterion.
Abstract:
The invention relates to a device and method for the measurement of the concentration of at least one substance in a turbid medium. The device comprises at least one radiation source (12) adapted to illuminate the turbid medium (17) on at least one irradiation area. The device further comprises at least one detector adapted to detect backscattered light from the turbid medium from at least one detection area and to generate detection signals representative of the backscattered light. The device is arranged to generate detection signals with respect to at least two different irradiation- detection distances. The irradiation-detection distances are defined as the respective distances between the irradiation areas and the detection areas. The device also comprises at least one spatial light modulator (2), comprising at least two electrode plates (5, 8) enclosing a liquid (7), the electrode plates supporting a plurality of electrodes (6, 10) arranged to define, with the liquid (7), light transmission patterns depending on the electrical field between the electrodes (6, 10), the irradiation areas and/or the detection areas being defined by said light transmission patterns.
Abstract:
Apparatus and method for an analyte determination in blood, relying on spectroscopic techniques, in which sample is illuminated with light having dedicated spectral characteristics. The first light source (20) is a broadband light source in the IR-range, the second light source (25) is comprised of one or more monochromatic sources, such as laser diodes. The sources are chosen to correspond to wavelength highly correlated with glucose adsorption.