Abstract:
A method of a virtual X-ray colonoscopy includes scanning (204) a dark-field contrast (144) insufflated colon lumen (140) with an X-ray scanner (110) configured for dark-field-contrast, which generates dark-field-contrasted projection data and attenuation projection data. The dark-field-contrasted projection data and the attenuation projection data are reconstructed (206)into one or more dark-field-contrasted images (148).
Abstract:
An X-ray imaging apparatus with an interferometer (IF) and an X-ray detector (D). A footprint of the X-ray detector (D) is larger than a footprint of the interferometer (IF). The interferometer is moved in scan motion across the detector (D) whilst the detector (D) remains stationary. Preferably the detector is a 2D full field detector.
Abstract:
The invention relates to beam hardening correction in X-ray Dark-Field imaging of a subject including a first material and a second material, the first and second material having different beam hardening properties. As the X-ray imaging data includes information on the internal structure of the imaged subject, such information may be used, together with appropriate calibration data to identify the beam hardening contributions occurring in the imaged area of the subject, so to allow for a correction of artifacts due to beam hardening in X-ray Dark-Field imaging.
Abstract:
The invention relates to a method of Computed Tomography imaging comprising: a. Performing a single acquisition of image data from at least two contrast agents into a blood vessel network, a first contrast agent among said at least two contrast agents having been in said blood vessel network for a longer time than a second contrast agent among said at least two contrast agents, b. Processing said image data using K-Edge detection and/or iodine delineation to separate data associated with each contrast agents in order to obtain a concentration map of each contrast agent, c. Determining from said image data a first part of the blood vessel network comprising both the first contrast agent and the second contrast agent, and a second part of the blood vessel network comprising only the first contrast agent, d. Calculating a partial blood volume map of the first part of the blood vessel network based on the total amount of second contrast agent and on the concentration map of the second contrast agent, e. Calculating a partial blood volume map of the second part of the blood vessel network based on the total amount of first contrast agent, on the concentration map of the first contrast agent and on the partial blood volume map of the first part of the blood vessel network.
Abstract:
A system and related method for signal processing. Interferometric projection data reconstructed into one or more images for a spatial distribution of a physical property of an imaged object. The interferometric projection data is derived from signals acquired by an X-ray detector (D), said signals caused by X-ray radiation after interaction of said X-ray radiation with an interferometer and with the object (OB) to be imaged, said interferometer (IF) having a reference phase. A reconstructor (RECON) reconstructs for the image(s) by fitting said data to a signal model by adapting fitting variables, said fitting variables including i) one or more imaging variables for the one or more images and ii), in addition to said one or more imaging variables, a dedicated phase variable for a fluctuation of said reference phase.
Abstract:
Radiation source and detector arrangement for a differential phase contrast CT scanner, in which the detector tiles are placed asymmetrically such that direct rays, which hit gaps between tiles are sampled by tile centers for the complementary rays. This may provide for good image quality without any approximate processing.