Abstract:
Some injectors of the invention may include a fluid drive responsive to pressure of a working fluid (e.g., liquid, pneumatic, or both) to impart a sequence of forces to drive a delivery device (e.g., a syringe) to deliver a medical fluid (e.g., a contrast agent, a radiopharmaceutical, a drug, or a combination thereof). Some injectors may include a multimedia tube configured to pass a working fluid (e.g., air) and a light signal (e.g., infrared). Some injectors may include a peristaltic drive responsive to pressure of a working fluid.
Abstract:
In one characterization, the present invention relates to a radiation-shielding assembly for holding a container having a radioactive material disposed therein. The assembly may, at least in one regard, be referred to as an elution shield and/or a dispensing shield. The assembly includes a body at least partially defining a cavity. There is at least one opening through the body into the cavity. The assembly may include a cap that at least generally hinders escape of radiation from the assembly through the opening. The cap may be releasably attached to the body in one orientation and may establish non-attached engagement with the body in another orientation. The assembly may include an adjustable spacer system for adapting the assembly for use with containers having different heights.
Abstract:
A system (10) to provide a specified volume of a medical fluid (23) from a bulk source (14) to a dose and/or delivery container (16) for injection into a patient. The fluid path (50, 100) between the bulk container (14) and the delivery container (16) is physically separated at a connecting site (66) before fluid (23) is injected from the delivery container (16) into the patient. The bulk container (14) may be a bag or bottle, and the delivery container (16) may be a syringe (81) or bag (28). A bag (28) delivery container (16) may be contained in a pressurizeable chamber (30) and fluid (23) may be delivered by providing pressure to a membrane (52) in the chamber (30) contacting a wall of the bag (28). The system (10) may be automated.
Abstract:
The application relates to radiation shielding (12) for use with radiopharmaceutical syringes (14). For example, in at least some regards, the invention relates to a syringe radiation shield that includes a sleeve (18) having a syringe receptacle defined therein to accommodate a barrel (26) of the syringe. In addition, this syringe radiation shield may also include a cover (20) having a plunger receptacle defined therein to accommodate a plunger of the syringe. The sleeve and the cover may be removably coupled wit one another so that the syringe can be housed within the syringe radiation shield, for example, during administration of a radiopharmaceutical from the syringe.
Abstract:
The invention, in one characterization, may be said to be directed to an alignment adapter that may be utilized in radioisotope elution procedures. In some embodiments, the alignment adaptor may be utilized to at least assist in aligning various components of an elution system. For example, in some embodiments, the alignment adaptor may be utilized to at least generally assist in aligning an aperture defined in a lid of the elution system and an elution needle of a radioisotope generator. In some embodiments, the alignment adaptor may be utilized to at least generally assist in aligning an elution assembly (e.g., elution shield housing an eluate vial) and an elution needle of a radioisotope generator. Further, in some embodiments, the alignment adaptor may be utilized to at least generally assist in aligning an eluant container (e.g., bottle of eluant) and a needle of a radioisotope generator.
Abstract:
The present invention relates to heat-retaining syringe jackets for reducing the cooling rate of medical fluids held inside syringes and methods of using such syringe jackets. An exemplary syringe jacket of the invention may include a material that experiences a phase transition at a phase transition temperature. Additionally or alternatively, the exemplary syringe jacket may include a material exhibiting a high specific heat.
Abstract:
Certain embodiments of the invention relate to a radiopharmaceutical system having a shielded cordless injector and various radiopharmaceutical pig and syringe structures that permit the syringe to remain in the pig during transportation and use of the syringe. In some embodiments, the shielded cordless injector may include an injector, a radiation shield disposed at least partially about the injector, a drive coupled to the injector, and an energy storage device coupled to the drive. The pig may have a computer with a display screen that displays a radioactivity level of a radiopharmaceutical and/or a desired (e.g., correct) unit dose volume of a radiopharmaceutical to be administered to a patient.
Abstract:
According to at least one aspect, the present invention is directed a radiation-shielding container for holding a radiopharmaceutical syringe including a needle and a syringe cap covering the needle. This radiation-shielding container is equipped with what may be characterized as a cap retainer for selectively holding the syringe cap. The syringe cap may be held by the cap retainer so that an open end of the cap is oriented for insertion of the needle into the cap. The radiopharmaceutical syringe may be used to administer a radiopharmaceutical to a patient and thereby result in what is commonly referred to as a spent radiopharmaceutical syringe. The hypodermic needle of the spent radiopharmaceutical syringe may be inserted into the syringe cap while the syringe cap is held by the cap retainer to secure the syringe cap to the syringe.
Abstract:
The filling of a syringe can be performed at a faster rate using a filling sequence which expels air from the fill tube before filling the syringe. A similar method is used when changing contrast containers during a filling sequence to ensure that all the air is expelled from the fill tube before filling resumes with the new contrast container. Additionally, by including a contrast container holder that is affixed to an injector head and holds the container near the syringe tip, the filling sequence can be accomplished without requiring the operator to hold the contrast container during the sequence.
Abstract:
A multi-dose injection system (108) is disclosed that allows for safe and easy use of bulk containers, a multi-use tubing set (110), and syringes (86a, 86b) across multiple patients. The bulk containers may include a saline bottle (118) and a contrast bottle (120) for administration to a series of patients undergoing imaging procedures. The bottles (118, 120) may be fluidly connected to a cassette (114) that includes a saline valve (176) and a contrast valve (178) operable to control flow from the saline bottle (118) and the contrast bottle (120), respectively. The cassette (114) may be fluidly interconnected to the multi-use tubing set (110) that is, in turn, fluidly connected to syringes (86a, 86b) on a powerhead (50) and a patient-specific tubing set (112). The patient-specific tubing set (112) may be replaced between patients and may also serve to isolate the remainder of the multi-dose injection system (108) from contamination from bodily fluids.