Abstract:
A delivery system for delivering a prosthesis includes a housing, a sheath extending from within the housing, a first rotatable knob, a first pulley coupled to the first rotatable knob so as to be rotatable therewith, a second rotatable knob, a second pulley coupled to the second rotatable knob so as to be rotatable therewith, and a cable coupled to the first pulley and to the second pulley. The cable is coupled to a proximal portion of the sheath. Rotation of the first rotatable knob causes the first pulley to rotate while the second pulley remains stationary thereby causing the first pulley to wind up a portion of the cable and retract the sheath at a first speed. Rotation of the second rotatable knob causes both the first and second pulleys to rotate, thereby causing both the first and second pulleys to wind up a portion of the cable and retract the sheath at a second speed being faster than the first speed.
Abstract:
A scaffolded stent-graft includes a graft material comprising an inner surface and an outer surface. The inner surface defines a lumen within the graft material. The scaffolded stent-graft further includes a scaffold comprising a mesh coupled to the graft material at the outer surface. The scaffold is configured to promote tissue ingrowth therein. In this manner, the scaffold enhances tissue integration into the scaffolded stent-graft. The tissue integration enhances biological fixation of the scaffolded stent-graft in vessels minimizing the possibility of endoleaks and migration.
Abstract:
A system for forming a suture connector in situ includes a suture connector placement device having a handle, an outer shaft, an intermediate shaft, and a push rod, and a suture connector having a sleeve and a plug. The intermediate shaft is slidingly disposed through a lumen of the outer shaft, and the push rod is slidingly disposed through a lumen of the intermediate shaft. When the suture connector is in a loaded configuration within the suture connector placement device, the sleeve is radially disposed over the intermediate shaft and the plug is positioned proximal to the sleeve within the lumen of the intermediate shaft. Distal advancement of the push rod moves the plug into the sleeve and proximal retraction of the intermediate shaft releases the resilient sleeve onto the plug, thereby securing two suture portions between the sleeve and the plug. The system is then utilized to trim the suture portions.
Abstract:
A system (400) for forming a suture connector in situ includes a suture connector placement device having a handle (450), an outer shaft (464), an intermediate shaft (474), and a push rod (482), and a suture connector having a sleeve (406) and a plug (408). The intermediate shaft is slidingly disposed through a lumen of the outer shaft, and the push rod is slidingly disposed through a lumen of the intermediate shaft. When the suture connector is in a loaded configuration within the suture connector placement device, the sleeve is radially disposed between the intermediate shaft and the outer shaft and the plug is positioned proximal to the sleeve within the lumen of the intermediate shaft. Distal advancement of the push rod moves the plug into the sleeve and proximal retraction of the intermediate shaft releases the resilient sleeve onto the plug, thereby securing two suture portions between the sleeve and the plug.
Abstract:
A reconfigurable delivery system is disclosed having a multi-lumen delivery catheter configuration that permits the delivery and staged release of a self-expanding main vessel stent-graft and a delivery sheath configuration that permits the introduction of various medical devices for the delivery and implantation of various branch vessel stent-grafts that are to be mated with the main vessel stent-graft. A method is disclosed wherein the delivery system is first used in the multi-lumen delivery catheter configuration to deliver and release a main vessel stent-graft that is configured for placement in the abdominal aorta for treatment of short-neck infrarenal, juxtarenal, and/or suprarenal aneurysms and then used in the delivery sheath configuration to facilitate the delivery of branch vessel stent-grafts that are configured to extend from the main vessel stent-graft into a respective renal artery.
Abstract:
A suturing device includes a handle, an elongated body, at least one suture snag, at least one pair of needles, and at least one suture pair. The suture snag is moveable between a deployed position in which two distal arm portions thereof radially extend away from the elongated body and a retracted position in which the two distal arm portions are disposed within the elongated body. The suture pair is slidingly disposed through the needle pair. The suturing device deploys the suture snag within a vessel adjacent to an arteriotomy, extends the needle pair through a vessel wall around the arteriotomy and through the deployed suture snag, extends the suture pair beyond the distal ends of the needle pair, and then utilizes the suture snag to capture the extended suture pair by retracting the suture snag to pull first or distal ends of the sutures back into the suturing device. An inflatable balloon or an expandable suture capture component may be alternatives to the suture snag for capturing the suture ends.
Abstract:
A stent-graft delivery system includes a balloon (420), a sleeve (430) disposed over the balloon, and a stent graft (100) mounted over the sleeve. The sleeve includes a weakened area (436) between a first end and a second end of the sleeve such that when the balloon is expanded, the balloon expands from a center portion of the balloon towards the ends of the balloon. The weakened area of the sleeve may be a slit, a thinner wall section, grooves, notches, or other weakening features. The sleeve may be adhesively attached to an outer shaft of the catheter or to an outer surface of the balloon.
Abstract:
A prosthesis comprising a proximal landing zone comprising metal comprising an array of holes therein, wherein a metal to vessel ratio of the proximal landing zone when in the final configuration is sufficiently high to encourage tissue ingrowth around the proximal landing zone yet is sufficiently low to ensure perfusion of a branch vessel through the proximal landing zone; and an exclusion zone attached to the proximal landing zone, the exclusion zone comprising graft material. The metal to vessel ratio is the percentage of the proximal landing zone covered by the metal when the proximal landing zone is in the final configuration. By forming the exclusion zone of graft material, excellent exclusion of the aneurysm is achieved.
Abstract:
Devices, methods, and systems for prosthesis delivery to patient vasculature are provided. A prosthesis delivery device provided herein delivers a prosthesis to the vasculature of a patient and permits an operator to deploy the prosthesis using a single action mechanism to deploy the prosthesis at a standard deployment rate and a dual action mechanism to deploy the prosthesis at an accelerated deployment rate. Deploying the prosthesis at an accelerated deployment rate results in alterations to the deployed prosthesis structure because the prosthesis is deployed with increased axial compression that results in the prosthesis having increased radial force.