Abstract:
An augmented reality (AR) includes a depth camera assembly (DCA) to capture images of various depth zones of scenes of a local area. The DCA can focus on specific ranges in a scene, important aspects, and/or regions of interest. The DCA generates image data of the local area such that the image includes information pertaining to a single depth zone. The captured image is specific to the single depth zone and is representative of objects within the single depth zone. The DCA uses the generated image data for the depth zones to generate augmented or partially- augmented images that include depth information for the objects in the local area.
Abstract:
A depth camera assembly (DCA) captures data describing depth information in a local area. The DCA includes an array detector, a controller, and an illumination source. The array detector includes a detector that is overlaid with a lens array. The detector includes a plurality of pixels, the plurality of pixels are divided into a plurality of different pixel groups. The lens array includes a plurality of lens stacks and each lens stack overlays a different pixel group. The array detector captures one or more composite images of the local area illuminated with the light from the illumination source. The controller determines depth information for objects in the local area using the one or more composite images.
Abstract:
A depth camera assembly (DCA) determines distances between the DCA and objects in a local area within a field of view of the DCA. The DCA includes an illumination source that projects a known spatial pattern modulated with a temporal carrier signal into the local area. An imaging device capture the modulated partem projected into the local area. The imaging device includes a detector that comprises different pixel groups that are each activated to captured light at different times. Hence, different pixel groups capture different phases of the temporally modulated pattern from the local area. The DCA determines times for light from the illumination source to be reflected and captured by the imaging device from the phases captured by the different pixel groups and also determines distances between the DCA and objects in the local area based on deformation of the spatial partem captured by the imaging device.
Abstract:
Disclosed is a system and method for tracking a user's eye using structured light. The structured light system is calibrated by training a model of surface of the user's eye. A structured light emitter projects a structured light pattern (e.g., infrared structured light) onto a portion of the surface of the eye. From the viewpoint of a camera, the illumination pattern appears distorted. Based on the distortion of the illumination pattern in the captured image, the eye tracking system can determine the shape of the portion of the user's eye that the structured light is incident upon. By comparing the determined shape of the portion of the user's eye to the model, the orientation of the eye may be determined. The eye tracking system or elements thereof may be part of a head-mounted display, e.g., as part of a virtual reality system.
Abstract:
A depth camera assembly (DCA) that captures data describing depth information in a local area. The DCA includes an imaging device, a controller, and an illumination source. The illumination source includes a plurality of emitters on a single substrate. The imaging device captures one or more images of the local area illuminated with the light from the illumination source. The controller determines depth information for objects in the local area using the one or more images.
Abstract:
A an augmented reality (AR) headset includes a depth camera assembly that combines stereo imaging with structured light (SL) to generate depth information for an area of interest. The depth camera assembly includes at least two image capture devices and a SL illuminator and determines an imaging mode based on a signal to noise ratio or spatial variance of images captured by one or more of the cameras. Different imaging modes correspond to different operation of one or more image capture devices and the SL illuminator. The depth camera assembly includes different ranges of signal to noise ratios that each correspond to an imaging mode, and the depth camera assembly configures the image capture devices and the SL illuminator based on an imaging mode associated with a range of signal to noise ratios including the signal to noise ratio of a captured image.