Abstract:
A system is provided to provide haptic feedback during a medical procedure comprising: a quantitative three-dimensional (Q3D); a surgical instrument disposed to deform a tissue structure; a haptic user interface device configured to provide an indication of tissue structure deformation in response to information indicative of the measure of tissue structure deformation; and a processor configured to produce a Q3D model that includes information indicative of a measure of tissue structure deformation and to provide the information indicative of the measure of tissue structure deformation to the haptic user interface device.
Abstract:
A system is provided that includes a Q3D endoscope disposed to image a field of view and a processor that produces a Q3D model of a scene and identifies target instruments and structures. The processor is configured to display the scene from a virtual field of view of an instrument, to determine a no fly zone around targets, to determine a predicted path for said instruments or to provide 3D tracking of said instruments.
Abstract:
A system to produce a replacement anatomical structure, comprising: a quantitative three-dimensional (Q3D) endoscope disposed to image a structure within a field of view that includes target tissue; at least one processor configured to: produce a first Q3D model of an anatomical structure that includes target tissue; produce a second Q3D model of the anatomical structure that includes remainder tissue in a location from which the target has been tissue removed; and produce a third Q3D model of a replacement structure based at least in part upon the first Q3D model and the second Q3D model.
Abstract:
A system is provided that includes a quantitative three-dimensional (Q3D) endoscope that is inserted through a first port providing access to a body cavity to a first position at which a first 3D image of a first portion of an anatomical structure is captured from a perspective of said endoscope. A first Q3D model is produced based upon the captured first image. The endoscope is inserted through a second port providing access to the body cavity to a second position at which a second image of a second portion of the anatomical structure is captured. A second quantitative Q3D model is produced based upon the captured second image. The first Q3D model and the second Q3D model are combined together to produce an expanded Q3D model of the anatomical structure. The expanded Q3D model can be stored for further manipulation or can be displayed in 3D.
Abstract:
A method is provided to align a quantitative three-dimensional (Q3D) model of a three dimensional (3D) structure with a 3D visual representation of a sub-surface target object internal to the anatomical structure, the method comprising: identifying fiducial points within the external surface of the 3D structure represented in the 3D visual representation; identifying the same fiducial points within the Q3D model; aligning the identified fiducial points in the 3D visual representation with the identified fiducial points in the Q3D model; and producing a visual image representation of the 3D structure that includes a view of an external surface and a view of the internal sub-surface target structure.
Abstract:
A device is provided that includes an endoscope; an image sensor array is disposed to image a field of view adjacent to the endoscope, each sensor includes a pixel array that is separate from the pixel arrays of other sensors; and a light source is disposed to illuminate the field of view.
Abstract:
The present invention provides multi-functional medical catheters, systems and methods for their use. In one particular embodiment, a medical catheter (100) includes a flexible elongate body (105) having a proximal end (110) and a distal end (120). A plurality of spaced apart electrodes (130-136) are operably attached to the flexible body near the distal end. At least some of the electrodes are adapted for mapping a tissue and, in some embodiments, at least one of the electrodes is adapted for ablating a desired portion of the tissue. The catheter includes a plurality of tissue orientation detectors (140-146) disposed between at least some of the electrodes. In this manner, the medical catheter is capable of tissue mapping, tissue imaging, tissue orientation, and/or tissue treatment functions.
Abstract:
Systems and methods for analyzing electronic cardiac signals for use in clinical diagnostics are configured to assist in the analysis of details of EKG signals and vector cardiograms to determine how patients should be categorized into specific cardiac risk categories, such as an acute coronary syndrome category. System configurations may comprise memory devices, computing systems, and EKG data sources positioned at various local or remote positions, and connected via various data connectivity modalities. Various parameters may be utilized to assist in the drawing of one or more conclusions regarding the cardiac condition of a patient.
Abstract:
A system includes a mobile unit having a plurality of electrodes, numbering less than ten, that are configured to contact a patient to obtain electrical signals therefrom, and a diagnostic center disposed remotely from the mobile unit The mobile unit and/or the diagnostic center are configured to construct a first portion of an ECG (electrocardiogram) corresponding to a first portion of a cardiac cycle of the patient by processing information based on received electrical signals using a first set of transformation parameters corresponding to the first portion of the cardiac cycle. The first portion may correspond to atrial or ventricular activity.
Abstract:
The present invention generally relates to implantable medical devices, such as pacemakers or implantable cardioverter/defibrillators (ICDs), and in particular to techniques for detecting and predicting changes of heart conditions, such as heart failure, at an early stage within a patient in which a medical device is implanted. The implantable medical device for monitoring a patient status, for example, for monitoring HF status and predicting a worsening of the HF status of the patient determines a patient status index, wherein a first average and a second average is compared at predetermined sample points of time. A patient status is determined based on said patient status index, wherein a patient status index that has increased substantially monotonously during a first monitoring period is determined to be an indication of an exacerbation of patient status, and in particular, a worsening of heart failure.