Abstract:
Systems and methods for managing cardiac arrhythmias are discussed. A data management system receives a first detection algorithm including a detection criterion for detecting a cardiac arrhythmia. An arrhythmia detector detects arrhythmia episodes from a physiologic signal using a second detection algorithm that is different from and has a higher sensitivity for detecting the cardiac arrhythmia than the first detection algorithm. The arrhythmia detector assigns a detection indicator to each of the detected arrhythmia episodes. The detection indicator indicates a likelihood that the detected arrhythmia episode satisfies the detection criterion of the first detection algorithm. The system prioritizes the detected arrhythmia episodes according to the assigned detection indicators, and outputs the arrhythmia episodes to a user or a process according to the episode prioritization.
Abstract:
A ventricularly implantable medical device that includes a sensing module that is configured to detect an artifact during ventricular filling and to identify an atrial event based at least on part on the detected artifact. Control circuitry of the implantable medical device is configured to deliver a ventricular pacing therapy to a patient's heart, wherein the ventricular pacing therapy is time dependent, at least in part, on the identified atrial event.
Abstract:
Systems for pacing cardiac conductive tissue are described. A medical system includes an electrostimulation circuit that may generate His- bundle pacing (HBP) pulses for delivery at or near the His bundle. In response to the delivery of the HBP pulse, the system senses a near-field cardiac activity representative of excitation of a para-Hisian myocardial tissue, and a far-field cardiac activity representative of excitation of the His bundle and a ventricle. The system classifies a tissue response to HBP into one of a plurality of capture types based on the sensed near-field and far-field cardiac activities. The system includes a control circuit to adjust one or more stimulation parameters based on the classified capture type. The electrostimulation circuit generates and delivers the HBP pulses according to the adjusted stimulation parameters to excite the His bundle.
Abstract:
An implantable medical device is configured to control a therapy module to couple a capacitor array comprising a plurality of capacitors to a plurality of extra-cardiovascular electrodes and control the therapy module to deliver a composite pacing pulse to a patient's heart via the plurality of extra-cardiovascular electrodes by sequentially discharging at least a portion of the plurality capacitors to produce a series of at least two individual pulses that define the composite pacing pulse.
Abstract:
Devices and methods are provided to treat acute and chronic heart failure by using one or more implantable or non-implantable sensors along with phrenic nerve stimulation to reduce intrathoracic pressure and thereby reduce pulmonary artery, atrial, and ventricular pressures leading to reduced complications and hospitalization.
Abstract:
Systems and methods may facilitate selection of a vector for delivering electrical stimulation to a patients heart. One illustrative method may include delivering electrical stimulation at a first voltage to each vector in a first set of two or more vectors of a multi-vector medical system, determining whether the delivered electrical stimulation at the first voltage resulted in capture for each of the vectors in the first set of two or more vectors, identifying those vectors of the first set of two or more vectors that were determined to result in capture as a second set of vectors, delivering electrical stimulation at a second voltage that is lower than the first voltage to each vector in the second set of vectors, and determining whether the delivered electrical stimulation at the second voltage resulted in capture for each of the vectors in the second set of vectors
Abstract:
Systems and methods for detecting a heart failure (HF) event indicative of worsening of HF, or for identifying patient at elevated risk of developing future HF event, are described. The system and methods can detect an HF event or predict HF risk using a multitude of fusion algorithms or classifiers, each employing one or more physiologic sensor signals. A system can comprise two or more partial predictor circuits each can adaptively generate a dynamic computational model (DCM). Each partial predictor circuit can determine a partial risk index indicating a likelihood of the patient developing a precursor physiologic event indicative or correlative of a future HF event. The system can include a prediction fusion circuit that can combine the partial risk indices and generate a composite risk indicator for detecting or predicting a likelihood of the patient developing a future HF event.
Abstract:
Devices, systems and methods for reducing patent discomfort during defibrillation by synchronizing defibrillation pulse delivery with a patient breathing cycle are described. Embodiments provide for a defibrillator having at least one electrode lead with one or more electrodes, a controller for determining whether fibrillation exists, a voltage generator for producing and discharging one or more electrical pulses to the electrode lead system and at least one breathing sensor for collecting and transmitting information relating to the breathing cycle of the patient to the controller. The controller may process the information from the breathing sensor, determine when one or more phases or instants of the breathing cycle are occurring and emit a command signal to the voltage generator to discharge defibrillation pulses to the electrode lead system in synchronization with the one or more phases or instants of the breathing cycle.
Abstract:
Diagnostic apparatus (24) includes a sealed case (80), comprising a biocompatible material and configured for implantation within a body of a human subject (22). A dielectrometric probe (26, 50, 63, 66, 70, 102, 160) is connected to the case and includes first and second conductors (40, 42, 54, 56, 64, 67, 68, 72, 74, 162, 164), which are configured to be placed in proximity to a target tissue (34) in the body. A driving circuit (82), which is contained in the case, is coupled to apply a radio-frequency (RF) signal to the probe and to sense the signal returned from the probe. Processing circuitry (84) is configured to evaluate, responsively to the returned signal, a dielectric property of the target tissue.
Abstract:
An implantable medical device (100) is configured for generating a cardiogenic impedance signal representative of the cardiogenic impedance of at least a portion of a heart (10) of a subject (20) during at least a portion of cardiac cycle. A moment processor (132) calculates a moment parameter value based on the cardiogenic impedance signal. The moment parameter is representative of a weighted sum of impedance amplitudes within a time window centered at defined time instance within the cardiac cycle. The weights of the impedance amplitudes are further dependent on the length in time between the defined time instance and the point of time of the associated impedance amplitude. The moment parameter is of high diagnostic value and is employed by an arrhythmia classifier (132) in order to classify a detected arrhythmia of the heart (10), such as discriminate between hemodynamically stable or unstable arrhythmias and/or supraventricular or ventricular tachycardia.