Abstract:
The invention provides uncharged water-soluble silica-adsorbing polymers for suppressing electroendoosmotic flow and to reduce analyte-wall interactions in capillary electrophoresis. In one aspect of the invention, one or more of such polymers are employed as components of a separation medium for the separation of biomolecules, such as polynucleotides, polysaccharides, proteins, and the like, by capillary electrophoresis. Generally, such polymers are characterized by (i) water solubility over the temperature range between about 20 DEG C to about 50 DEG C, (ii) concentration in a separation medium in the range between about 0.001 % to about 10 % (weight/volume), (iii) molecular weight in the range of about 5 x 10 to about 1 x 10 daltons, and (iv) absence of charged groups in an aqueous medium having pH in the range of about 6 to about 9. In one embodiment, polymers of the invention are selected from the group consisting of polylactams, such as polyvinylpyrrolidone; N,N-disubstituted polyacrylamides; and N-substituted polyacrylamides. In accordance with the method of the invention, a sufficient amount of polymer adsorbs to the capillary surface to establish a zone of high viscosity that shields the analyte from the wall and impedes the movement of an electrical double layer under an electric field.
Abstract:
The invention provides uncharged water-soluble silica-adsorbing polymers for suppressing electroendoosmotic flow and to reduce analyte-wall interactions in capillary electrophoresis. In one aspect of the invention, one or more of such polymers are employed as components of a separation medium for the separation of biomolecules, such as polynucleotides, polysaccharides, proteins, and the like, by capillary electrophoresis. Generally, such polymers are characterized by (i) water solubility over the temperature range between about 20 DEG C to about 50 DEG C, (ii) concentration in a separation medium in the range between about 0.001 % to about 10 % (weight/volume), (iii) molecular weight in the range of about 5 x 10 to about 1 x 10 daltons, and (iv) absence of charged groups in an aqueous medium having pH in the range of about 6 to about 9. In one embodiment, polymers of the invention are selected from the group consisting of polylactams, such as polyvinylpyrrolidone; N,N-disubstituted polyacrylamides; and N-substituted polyacrylamides. In accordance with the method of the invention, a sufficient amount of polymer adsorbs to the capillary surface to establish a zone of high viscosity that shields the analyte from the wall and impedes the movement of an electrical double layer under an electric field.
Abstract:
A method of converting an N-protected amino acid to a corresponding amino acid thiohydantoin is disclosed. The method comprises reacting an N-protected amino acid with a compound represented as follows (OR)(OR')P(=O)X or (OR)(OR')P(=O)-O-P(=O)(OR'')(OR''') wherein R, R', R'', and R''' are each alkyl, aryl or aralkyl groups and X is halogen. The activated N-protected amino acid thus obtained is then reacted with a thiocyanate reagent to generate an N-protected amino acid thiohydantoin.
Abstract:
The present invention relates to a fluorescent polynucleotide analyzer system which utilizes electrophoresis, and in particular, capillary-based electrophoresis. The analyzer system of the present invention is comprised of, in combination, a capillary containing an electrophoretic separation medium, a means for introducing a mixture of fluorescently labeled polynucleotide fragments into the capillary, detection means for detecting the fluorescently labeled polynucleotide fragments, including the simultaneous detection of multiple fluorescent labels, and, means for introducing and removing electrophoretic separation medium from the capillary.
Abstract:
A Capillary Electrophoresis apparatus and method are disclosed which utilize a meltable plug in an end of the capillary tube to selectively pass small ionic contaminants electrophoretically and retain macromolecular analytes against one end of the plug until the plug is melted. When this plug is melted, the analytes and thecontaminants pass through unimpeded. This permits separation of the analytes from the contaminants during electrophoretic separation and enhances instrument resolution.
Abstract:
The invention is directed to a differential analysis method and apparatus (10) wherein a sample (58) and a reference (56) are subjected to an externally applied disturbance, such as a temperature change, in accord with a prescribed function comprising the sum of a linearly changing part and a periodically changing part, and the measured differential signal is processed into real and imaginary components relating, respectively, to the energy storage and energy loss portions of the signal.
Abstract:
A system is provided for carrying out real time fluorescence-based measurements of nucleic acid amplification products. In a preferred embodiment of the invention, an excitation beam is focused into a reaction mixture through a surface, the reaction mixture containing: (i) a first fluorescent indicator capable of generating a first fluorescent signal whose intensity is proportional to the amount of an amplification product in the volume of the reaction mixture illuminated by the excitation beam and (ii) a second fluorescent indicator homogeneously distributed throughout the reaction mixture capable of generating a second fluorescent signal proportional to the volume of reaction mixture illuminated by the excitation beam. Preferably, the excitation beam is focused into the reaction mixture by a lens through a portion of a wall of a closed reaction chamber containing the reaction mixture. The same lens is used to collect the first and second fluorescent signals generated by the first and second fluorescent indicators, respectively, in response to the excitation beam. The ratio of the fluorescent intensities of the first and second fluorescent signals provides a stable quantitative indicator of the amount of amplification product synthesized in the course of the amplification reaction.
Abstract:
A capillary electrophoresis system and method of electrokinetically loading a capillary electrophoresis sample into a separation medium in a capillary tube in which an entangled polymer matrix is formed having the sample embedded therein. The matrix has a mesh size effective to retard movement of macromolecules such as DNA sequencing templates through the matrix when an electric field is applied across the matrix. The entangled polymer matrix is formed by a linear polymer having a molecular weight of at least 20K Daltons.
Abstract:
An oligonucleotide probe is provided which includes a fluorescent reporter molecule and a quencher molecule capable of quenching the fluorescence of the reporter molecule. The oligonucleotide probe is constructed such that the probe exists in at least one single-stranded conformation when unhybridized where the quencher molecule is near enough to the reporter molecule to quench the fluorescence of the reporter molecule. The oligonucleotide probe also exists in at least one conformation when hybridized to a target polynucloetide where the quencher molecule is not positioned close enough to the reporter molecule to quench the fluorescence of the reporter molecule. By adopting these hybridized and unhybridized conformations, the reporter molecule and quencher molecule on the probe exhibit different fluorescence signal intensities when the probe is hybridized and unhybridized. As a result, it is possible to determine whether the probe is hybridized or unhybridized based on a change in the fluorescence intensity of the reporter molecule, the quencher molecule, or a combination thereof. In addition, because the probe can be designed such that the quencher molecule quenches the reporter molecule when the probe is not hybridized, the probe can be designed such that the reporter molecule exhibits limited fluorescence until the probe is either hybridized or digested.