Abstract:
Methods of printing a three-dimensional object using co-reactive components are disclosed. Thermosetting compositions for three-dimensional printing are also disclosed.
Abstract:
A coating composition comprising the reaction product of an epoxy-functional backbone resin having free hydroxyl groups and a lactide is disclosed.
Abstract:
Methods are disclosed for producing aqueous dispersions comprising a resinous phase dispersed in a dispersing medium, wherein the resinous phase includes an active hydrogen-containing film-forming resin. Also disclosed are electrodepositable coating compositions that include such dispersions, electroconductive substrates at least partially coated with such compositions, and methods for at least partially coating electroconductive substrates with such compositions.
Abstract:
Methods of additive manufacture using coreactive components are disclosed. Thermosetting compositions for additive manufacturing are also disclosed.
Abstract:
A coating composition having a measured solids content of at least 95 % according to test method ASTM D2369 is disclosed. The composition includes a mixture of (a) a polymer prepared from one or more functional monomers comprising a (meth)acrylic monomer, an allyl monomer, or combinations thereof each having an ethylenically unsaturated double bond and an additional reactive functional group, and (b) a reactive diluent. At least some of the additional reactive functional group of the functional monomer remains unreacted during formation of the polymer. The reactive diluent has a boiling point of greater than 100°C and a reactive functional group that reacts with the reactive functional group on the polymer at a temperature that is lower than the boiling point of the reactive diluent. Also disclosed are substrates having a cured coating thereon, the coating formed from the cured coating composition, and methods for providing sound and vibration damping.
Abstract:
Methods of printing a three-dimensional object using co-reactive components are disclosed. Thermosetting compositions for three-dimensional printing are also enclosed.
Abstract:
A catalyst composition is provided. The composition comprises at least 30 percent by weight of a catalyst compound based on the total weight of solids in the catalyst composition; and a polymer prepared from ethylenically unsaturated monomers. The polymer either (i) has a backbone derived from substantially hydrophilic monomers and/or monomers containing groups that may be rendered substantially hydrophilic after polymerization, and a plurality of side chains along the backbone derived from substantially hydrophobic monomers, or (ii) has a backbone derived from substantially hydrophobic monomers and a plurality of side chains along the backbone derived from substantially hydrophilic monomers and/or monomers containing groups that may be rendered substantially hydrophilic after polymerization. The catalyst compound is contained within or encapsulated by the polymer. Methods of preparing the catalyst composition and curable compositions containing the catalyst composition are also provided.
Abstract:
A non-aqueous dispersion comprising a continuous phase and a dispersed phase, wherein the dispersed phase comprises the dispersion polymerization reaction product prepared from a reaction mixture comprising an ethylenically unsaturated monomer, an acrylic polymer stabilizer, and an aliphatic polyester stabilized seed polymer, is disclosed. Related coatings and coated substrates are also disclosed.
Abstract:
A non-aqueous dispersion comprising the dispersion polymerization reaction product of an ethylenically unsaturated monomer and a nonlinear, random acrylic polymer stabilizer is disclosed. Related coatings, methods, and substrates are also disclosed.
Abstract:
A coating composition includes: (a) a carboxylic acid functional polyol polymer; (b) a melamine-formaldehyde crosslinker reactive with the carboxylic acid functional polyol polymer; (c) an acid catalyst; and (d) a non-aqueous liquid medium. The carboxylic acid functional polyol polymer has an acid value within a range of from 30 to 120 mg KOH/g and a hydroxyl value within a range of from 60 to 150 mg KOH/g. The melamine-formaldehyde crosslinker includes imino and methylol groups that together make up 35 mole % or less of the total functionality of the melamine-formaldehyde crosslinker, and butyl groups and isobutyl groups that together make up 5 mole % or greater of the total functionality of the melamine-formaldehyde crosslinker. The coating composition cures at a temperature of 100°C or less.