Abstract:
The present invention is concerned with a process for forming a very well defined pattern of particulate material in a composite material comprising a web material and particulate absorbent material. The present invention relates also to a method for determining the equipment design and process parameter for such a process. In a particular application, the present invention provides a process for preparing liquid absorbent structures, such as may be useful for disposable absorbent articles.
Abstract:
A substantially cellulose free absorbent core comprising absorbent polymer material having a saline flow conductivity greater than about 100 x 10-7 cm3sec/g and a centrifuge retention capacity of greater than about 20 g/g. A disposable absorbent article is also disclosed.
Abstract translation:一种基本上不含纤维素的吸收芯,其包含具有大于约100×10 -7 cm 3 / g的盐水流动电导率的吸收性聚合物材料和大于约20g / g的离心保留容量。 还公开了一次性吸收制品。
Abstract:
Disposable absorbent article comprising an interior design signal indicating absorbency and an absorbent core including first and second absorbent layers, the first absorbent layer including a first substrate and the second absorbent layer including a second substrate, the first and second absorbent layers further including absorbent particulate polymer material deposited on the first and second substrates and thermoplastic material covering the absorbent particulate polymer material on the respective first and second substrates, the first and second absorbent layers combined together such that at least a portion of the thermoplastic material of the first absorbent layer contacts at least a portion of the thermoplastic material of the second absorbent layer, the absorbent particulate polymer material is disposed between the first and second substrates in an absorbent particulate polymer material area, and the absorbent particulate polymer material is substantially continuously distributed across the absorbent particulate polymer material area.
Abstract:
A disposable absorbent article includes a chassis and an absorbent core which is substantially cellulose free. The chassis may contain a topsheet and a backsheet. The absorbent core may be located between the topsheet and the backsheet and may include (i) a storage layer which comprises an absorbent particulate polymer material and has a wearer facing side and an opposed garment facing side, (ii) a first core wrap sheet covering the wearer facing side of the storage layer, and (iii) a second core wrap sheet covering the garment facing side of the storage layer, the first core wrap sheet being joined to the second core wrap sheet along at least one traverse sealing zone.
Abstract:
A method for making a disposable absorbent core comprises depositing absorbent particulate polymer material from a plurality of reservoirs in a printing roll onto a substrate disposed on a grid of a support which includes a plurality of cross bars extending substantially parallel to and spaced from one another so as to form channels extending between the plurality of cross bars. The plurality of reservoirs in the first peripheral surface are arranged in an array comprising rows extending substantially parallel to and spaced from one another. The support and printing roll are arranged such that the plurality of cross bars are substantially parallel to the rows of the plurality of reservoirs and the absorbent particulate polymer material is deposited on the substrate in a pattern such that the absorbent particulate polymer material collects in rows on the first substrate formed between the first plurality of cross bars. A thermoplastic adhesive material is deposited on the absorbent particulate polymer material and the substrate to cover the absorbent particulate polymer material on the substrate and form an absorbent layer. A disposable absorbent article and apparatus for making an absorbent article are also disclosed.
Abstract:
The present invention relates to a process for depositing particulate material in a predetermined pattern onto a moving surface comprising the steps of: feeding the particulate material under gravity from a hopper to a discharge zone containing an feed opening; supplying a gas under pressure to the bulk of particulate material within the hopper discharge zone; transferring the particulate material through the feed opening to the surface of a transfer device, wherein the outer surface of the transfer device contains a pattern of particulate-receiving recesses; rotating the transfer device to a deposition zone and transferring the particulate material to a carrier layer. The present invention further relates to an apparatus comprising: a hopper comprising a discharge zone, the discharge zone comprising a feed opening, and wherein the discharge zone further comprises a gas supply assembly to supply gas under pressure into particulate material within the discharge zone; a transfer device adjacent to the feed opening, wherein the outer surface of the transfer device contains a pattern of particulate-receiving recesses.