Abstract:
Segregated test mode clock gating circuits in a clock distribution network of a circuit for controlling power consumption during testing is provided. To reduce power consumption and current-resistance (IR) drop during testing of a circuit, existing clock gating circuits (e.g., clock gating cells (CGCs)) that control the functional mode of circuit blocks in the circuit are additionally test mode gated for hierarchical testing of the circuit. To avoid the need to gate every CGC in the clock distribution network, only certain segregated clock gating circuits in the clock distribution network may be selected for test mode clock gating according to desired testing hierarchy of the circuit. Test mode clock gating of only certain segregated clock gating circuits in a circuit can reduce the number of test gating circuits providing test mode clock gating to mitigate power consumption and area needed for providing selective testing of circuit blocks in the circuit.
Abstract:
An apparatus and method of employing mutually exclusive write and read clocks in scan capture mode for testing digital interfaces. The apparatus includes a first circuit and a first clock generator configured to generate a first clock signal for transferring a test sample from an input to an output of the first circuit in response to the first clock signal during each of a first set of scan capture cycles; a second circuit and a second clock generator configured to generate a second clock signal for transferring the test sample from an input to an output of the second circuit in response to the second clock signal during each of a second set of scan capture cycle; the first clock signal being suppressed during each scan capture cycle of the second set, and the second clock signal being suppressed during each scan capture cycle of the first set.