Abstract:
A memory device biasing circuit is disclosed, the circuit having a pair of semiconductor devices coupled to receive a supply voltage having a supply voltage level suitable for operating a memory device in an active mode and operable for providing an adjustable biased voltage to the memory device that is greater than a minimal voltage level for operating the memory device in a data retention mode. The pair of semiconductor devices includes a first semiconductor device; and, a second semiconductor device that includes an opposite type of semiconductor device than the first semiconductor device such that the pair of semiconductor devices includes each of an N-type semiconductor device and a P-type semiconductor device. The memory device biasing circuit further includes a bias adjustment circuit coupled to the second semiconductor device and configured to adjust the operation of the second semiconductor device based on the supply voltage.
Abstract:
An apparatus and method of employing mutually exclusive write and read clocks in scan capture mode for testing digital interfaces. The apparatus includes a first circuit and a first clock generator configured to generate a first clock signal for transferring a test sample from an input to an output of the first circuit in response to the first clock signal during each of a first set of scan capture cycles; a second circuit and a second clock generator configured to generate a second clock signal for transferring the test sample from an input to an output of the second circuit in response to the second clock signal during each of a second set of scan capture cycle; the first clock signal being suppressed during each scan capture cycle of the second set, and the second clock signal being suppressed during each scan capture cycle of the first set.
Abstract:
An integrated circuit (IC) is disclosed herein for adjustable power rail multiplexing. In an example aspect, an IC includes a first power rail, a second power rail, and a load power rail. The IC further includes multiple power multiplexer (power-mux) tiles and adjustment circuitry. The multiple power-mux tiles are coupled in series in a chained arrangement and implemented to jointly perform a power-multiplexing operation. Each power-mux tile is implemented to switch between coupling the load power rail to the first power rail and coupling the load power rail to the second power rail. The adjustment circuitry is implemented to adjust at least one order in which the multiple power mux tiles perform at least a portion of the power-multiplexing operation.
Abstract:
An integrated circuit (IC) is disclosed herein for adjustable power rail multiplexing. In an example aspect, an IC includes a first power rail, a second power rail, and a load power rail. The IC further includes multiple power multiplexer (power-mux) tiles and adjustment circuitry. The multiple power-mux tiles are coupled in series in a chained arrangement and implemented to jointly perform a power-multiplexing operation. Each power-mux tile is implemented to switch between coupling the load power rail to the first power rail and coupling the load power rail to the second power rail. The adjustment circuitry is implemented to adjust at least one order in which the multiple power mux tiles perform at least a portion of the power-multiplexing operation.
Abstract:
A system and method to perform scan testing using a pulse latch with a blocking gate is disclosed. In a particular embodiment, a scan latch includes a pulse latch operable to receive data while a pulse clock signal has a first logical clock value and a blocking gate coupled to an output of the pulse latch. The blocking gate is operable to propagate the data from the output of the pulse latch while the pulse clock signal has a second logical clock value.
Abstract:
A power multiplexor includes: a first branch including a first transistor coupled in series with a second transistor between a first power supply and a power output; a second branch including a third transistor coupled in series with a fourth transistor between a second power supply and the power output; a controller configured to selectively assert and de-assert a control signal to the first branch and the second branch; a first voltage level shifter coupled between the second transistor and the controller; and a second voltage level shifter coupled between the third transistor and the controller.
Abstract:
A MOS device may include a first logic component with a first input located on a second track and a first output located on the third track. The MOS device may include a second logic component with a second input located on the fourth track and a second output located on a fifth track. For example, the MOS device includes a first interconnect on a M x layer that is coupled to the first input on the second track. In another example, the MOS device includes a second interconnect on the M x layer that is coupled to the first output on the third track. The MOS device includes a third interconnect on a M y layer that is coupled to the second input on the fourth track. Still further, the MOS device includes a fourth interconnect on the M y layer that is coupled to the second output on the fifth track.
Abstract:
The apparatus may include a first latch configured to store a first state or a second state. The first latch may have a first latch input, one of a set input or a reset input, a first pulse clock input, and a first latch output. The first latch input may be coupled to a fixed logic value. The one of the set input or the reset input may be coupled to a clock signal or an inverted clock signal, respectively. The apparatus may include an AND gate having a first AND gate input, a second AND gate input, and a first AND gate output. The clock signal may be coupled to the first AND gate input. The first latch output may be coupled to the second AND gate input. The AND gate output may be configured to output a pulsed clock. The pulsed clock may be coupled to the first pulse clock input.
Abstract:
A memory circuit according to some examples may include a clock delay circuit that use a polarity of a write enable signal to determine an operation (i.e. write or read) on the memory that provides the desired clock latency to the memory. The clock delay circuit may have a low skew portion and a high skew portion. The selection of the high skew portion or low skew portion may depend on the status of the write enable line, such as a polarity or logical value.
Abstract:
A static random access memory (SRAM) includes a first bitcell and a second bitcell. The first bitcell includes an aging transistor and the second bitcell includes a non-aging transistor. An aging sensor is coupled between the first bitcell and the second bitcell to determine an amount of aging associated with the aging transistor. In one aspect, the amount of aging associated with the aging transistor is determined based on a difference between a voltage or current associated with the aging transistor and a voltage or current associated with the non-aging transistor.